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ABSTRACT

A transverse resonance mode matching technique has been developed to analyse passive
microwave and millimetre-wave waveguides and components. This technique possesses
superior computational efficiency when compared to more general approaches such as the
finite element method. This advantage is particularly useful for analysing broadband
components used in electronic warfare systems. In this report, the theory behind this
transverse resonance analysis is presented in detail. Theoretical results for several
waveguiding structures are presented and compared with experimental or published data to
verify the analysis.
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Transverse Resonance Analysis Technique for
Microwave and Millimetre-Wave Circuits

EXECUTIVE SUMMARY

An efficient and accurate method for analysis of broad bandwidth microwave and millimetre-wave
devices has been developed. This report describes the method in detail and the results obtained by
applying the method to typical microwave structures are compared with experimental or published
data to verify the accuracy of the method.
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1.1

1 INTRODUCTION

Purpose of this study

Computer-aided design software for microwave circuits is now readily available, at
considerable cost, from companies such as Hewlett Packard, Compact Software, and many others.
However, these software packages mostly are directed towards analysing planar integrated
circuits using microstrip, and variants such as coplanar waveguide but do not adequately analyse
other structures in use especially at mm-wave frequencies. Structures such as rectangular or
circular waveguide, finline, dielectric waveguides are only analysed in an approximate manner
(many programs are dominant-mode only) if at all. More specifically, some of the limitations
have been identified to include: [1]

1. the inability to predict the onset of, and the consequences of, higher order propagating
modes.

2. the lack of design information for popularly emerging new' transmission media, e.g.
finlines.

3. the lack of design information concerning active devices at millimetre wavelengths.
(Low frequency design models cannot be successfully extrapolated because of the
increasing importance of parasitic elements and the distributed nature of the problem.)

4. the lack of design information relating to discontinuities in transmission media at
millimetre wavelengths, and

5. the inability to predict the interaction of circuit elements which are in close proximity
to one another.

The main areas of weakness of existing commercial software are thus in the areas of conventional
waveguides, finline, dielectric waveguides, transitions between various structures, and the
capability to explore new waveguiding structures. These problems are slowly being overcome
through the use of field-theory based simulators [2] as a replacement for, or in conjunction with,
circuit-theory based simulators. However, even these simulators are mostly oriented toward
planar circuits because this is where the greatest commercial demand lies. The exception is some
software (mostly based on the finite-element method) such the High-Frequency Structure
Simulator from Hewlett Packard. While this is sufficiently general to analyse many circuits, it
requires a powerful computer to analyse even relatively simple circuits. There is always a trade
off between methods that are relatively simple to implement but require a lot of computation
power and methods that are highly efficient but either lack generality or are complex to
implement.

This report describes an approach which, while more efficient than general field-theory based
methods such as the finite element method, still enables a wide variety of circuits to be
analysed. The philosophy has been to pursue the middle ground - that is, a method which is
general enough to solve a variety of practical problems that occur particularly in millimetre-
wave circuit design, but at the same time is efficient enough to be used for routine design.

The prime motivation for this work has been that many electronic warfare applications require
extremely broadband components (multi-octave) and the constraints in the design of these
components are much more severe than for narrow band components. For example, in the design of
a broadband amplifier or mixer, there is a direct trade off between gain (or conversion loss) and
bandwidth. Moreover, high performance for e.g. direction-finding may require a high degree of
gain flatness and matching between individual components. This combination of broad
bandwidths and high precision can only be economically achieved with accurate computer
analysis techniques which are specifically designed for these tasks.
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1.2

Review

A wide variety of numerical techniques for the analysis of microwave and millimetre-wave
structures have been developed over the years and, aided by the rapid advances in computing
technology, many are beginning to now reach a level of maturity. However, no single technique is
suited to all problems and this situation is unlikely to change. At present, one must choose a
technique (or software package) that is appropriate to the problem being solved, just as a
tradesperson chooses the suitable tool based on training and experience. What will happen in
the future is that design software will have a range of techniques built into the one package and
the user will be largely unaware of which technique is being used because it will be the software
rather than the user that will choose the most appropriate technique.

121  Analysis techniques

Analysis techniques have been described in detail in recent books edited by Itoh (31,
Sorrentino [4], and Yamashita [5]. These methods are summarised in Table 1.1 according to
the chapter headings in the books and grouped to show where the methods are common to
more than one book. There is also a certain amount of overlap between many techniques e.g.
the transverse resonance technique uses mode-matching which in turn is fundamentally a
moment method. Methods other than transverse resonance and mode matching will not be
discussed further in this report.

Table1.1 Summary of analysis techniques.

Itoh [3] Sorrentino [4] Yamashita [5]

The Finite Element Method

Finite-Element Method The Finite-Element Method

Finite-Difference Method

Boundary-Element Method The Boundary-Element Method

The Transmission Line Matrix
(TLM) Method

Transmission-Line Matrix
Method

Planar Circuit Analysis

Planar-Circuit Approach

The Spectral Domain Method

Spectral Domain Approach

Spectral-Domain Approach

The Method of Lines Method of Lines

Integral Equation Technique Method of Moments

The Mode-Matching Method Mode-Matching and Field- The Mode-Matching Method
Matching Techniques The Point-Matching Method

Transverse Resonance Technique

Transverse Resonance
Techniques

The Waveguide Model for the
Analysis of Microstrip
Discontinuities

Generalised Scattering Matrix
Technique

The Wiener-Hopf and Modified
Residue Calculus Techniques

The Geometrical Theory of
Diffraction

The Equivalent Source Method

Asymptotic Expansion Methods

The Beam Propagation Method
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1.2.2  Origins and background of current method

A brief summary of work that has influenced the current development follows. This is not
an exhaustive review but summarises key developments. The beginnings of the method can
be found in the early work on microwave network theory of Montgomery, Dicke and
Purcell [6], and Marcuvitz [7] in the well known MIT Radiation Laboratory Series and also
a little later in Altschuler and Goldstone [8} who developed network representations of
waveguide obstacles. Clarricoats and Oliner {9] derived a transverse-network
representation for hybrid modes in inhomogeneously filled waveguides using a method
employed previously in the representation of slotted waveguides. Felsen and
Marcuvitz [10] described a generalised derivation of the transverse field equations and
modal representations of the electromagnetic field in transversely inhomogeneous regions.
Kerns [11] discussed concepts and conditions underlying the establishment and use of
immittance- and scattering-matrix descriptions of waveguide n-ports. Peng and Oliner [12]
discussed a class of open dielectric waveguides which is of direct importance to the areas
of integrated optics and millimetre-wave integrated circuits and presented a
mathematical formulation based on a rigorous mode-matching procedure. Bornemann and
Arndt [13] used transverse resonance to calculate the characteristic impedance of finlines
with up to three slots by a rigorous hybrid-mode analysis. Masterman and Clarricoats [14]
described a computational method for solving a wide range of transverse waveguide
discontinuity problems and showed that in some cases, the solution is found to be sensitive
to the way in which infinite series of field functions is truncated. They further showed
how the optimum form of truncation can be determined for many configurations of practical
importance. Ping and Jingfeng [15] investigated the filter characteristic of NRD
waveguide by combining a network approach with mode matching theory in an
application of the method of Peng and Oliner. Bates and Ko [16] used multi-modal
admittance matrices to represent the coupled radial regions in a waveguide diode
mounting structure.

Scope of this study

The analysis described in this report is a full three-dimensional mode matching analysis using
generalised transverse resonance to analyse the constituent two-dimensional cross-sections in
passive waveguide structures. The structure is assumed to be lossless and consisting of
homogeneous and isotropic cuboidal sub-sections which may be dielectric filled.

Overview of contents

Chapter 2 describes the technique in detail, while chapter 3 gives results, including dispersion
plots for a range of two-dimensional structures and S-parameter results for selected
3-dimensional structures. The results are intended to verify the applicability and accuracy of the
analysis and are not a detailed study of any particular structure.

2 TECHNIQUE DEVELOPMENT

General Procedure

Consider a waveguide circuit element made up of a number of cascaded sections as shown in
Figure 2.1. Each section is uniform in the direction of propagation (chosen to be the z-direction),
and consists of a number of connected rectangular regions. Each region may contain an arbitrary
number of dielectric layers. A brief outline of a transverse resonance mode matching technique to
determine the scattering parameters of the circuit element follows:
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(i) Subdivision of waveguide element

Each section (uniform in the direction of propagation) in the element is sub-divided into layers
and regions comprising homogeneous and isotropic segments of rectangular cross-section. Layers
aligned vertically and not separated by conducting surfaces are combined vertically to form
subregions. Vertically aligned subregions are in turn combined to form regions. Regions are
stacked horizontally to construct sections. For much of the discussion of this chapter, only simple
regions such as those shown in Figure 2.1 which consist of a single subregion need be considered.
(An example of a subregion is shown in Figure 2.5.) Once the waveguide element is subdivided,
the analysis proceeds by first analysing all of the subregions of a section.

€1 /
/7
&)
’
z _Zection
/
I/ /
uy layers \\ > I: € section

/7

l I Il | «— regions

hl
z & 7

Figure2.1 Structure geometry

(ii) Analysis of section subregions

The transverse resonance technique is first applied in the y-direction to obtain mode eigenvalues
and eigenfunctions for each subregion in each section. The subregion eigenmodes propagate in the
u-direction, which lies in the x-z plane. This concept is described further in [12]. These
eigenmodes are therefore referred to as u-modes. For a given free-space wavenumber ko, the
propagation constant k,, or the u-mode eigenvalue, is given by:

= Jkoe, — k.

Note that while k; is dependent on each layer's dielectric constant & and the layer's thickness,
ky (and hence k;) is constant across a subregion because of field continuity at layer interfaces.
Field continuity at subregion interfaces requires k; to be the uniform across the entire section.
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Therefore, by determining the subregion eigenmodes and eigenfunctions, the effect of individual
layers is determined, and the analysis proceeds by combining subregions.

(iii) Analysis of individual sections

To obtain the required z-mode eigenvalues and eigenfunctions for each section, the transverse
resonance technique is applied in the x-direction. This stage of the calculation is generally the
most computationally demanding, since there are a number of steps involved in this process
which must be repeated many times. These steps are:

(a) Assume an initial value of k; for a particular z-mode in the section.

(b)  From the subregion u-mode data, calculate the corresponding x-mode eigenvalues, or
propagation constants ky, and eigenfunctions for each region. The propagation constants

are given by
k, = \}kuz - kz2

(c)  Apply the transverse resonance technique in the x-direction, including x-mode
coupling at region interfaces. The assumed value of k; is varied iteratively and steps (b)
and (c) repeated until the transverse resonance condition is satisfied. Such values of k;
correspond to z-mode eigenvalues for the section. The z-mode eigenfunctions are calculated
from x-mode data.

(iv) Analysis of complete element

Having obtained the field expansion in the individual sections expressed by the z-mode
eigenvalues and eigenfunctions, the scattering parameters of both the sections themselves and
the discontinuities arising at section interfaces can be determined. By cascading these scattering
matrices, the scattering matrix for the entire waveguide element is readily determined. This
constitutes the desired output from the analysis.

Definitions and conventions

The rectangular coordinate system from [17] shown in Figure 2.1 was adopted, with unit vectors
denoted by (uy, uy, uz). The dependence on time ¢ is assumed throughout to be ¥ where j = V-1
and @ =2af and fis the operating frequency.

Let the total electric and magnetic field in the waveguide in the transverse cross-section of the

ith section be given by vectors E; and H; respectively. The total field in the ith two-dimensional
section is uniquely described by the tangential fields alone so we may let

E, = Exi +Ey,- +Ezi
= Eti + Ezi
where Et; is the tangential electric field and similarly for the magnetic field. If the field is

represented by a sum of normal modes in each subregion of the ith cross-section, then the total
tangential fields may be expressed by a weighted sum over all possible modes
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i.e. for each mode

m __ smym
Hti—z‘.hi

where vrin and irin are equivalent voltages and currents which are functions of the propagation

coordinate variable only and erin and hrin are mode functions which depend on the transverse

variables (and physical geometry) only. These equivalent voltages and currents can be used in a
circuit model of the waveguide e.g. the modal transfer admittance between mode m at port i and

mode p at port j is given by

.m
mp _ b
Yio =P
J

Method

Following the general procedure outlined in Section 2.1, the method is developed in greater
detail. The transverse resonance technique is applied first in the y-direction in the subregion
analysis and then again in the x-direction in the section analysis. Once the required number of
section modes have been calculated for each section using the transverse resonance approach, a
mode matching technique is used to calculate the scattering parameters of the complete element
formed by cascading its constituent sections.

2.3.1 Multilayer parallel plate analysis (subregions)

The first step is to apply the transverse resonance technique in the y-direction to
determine the subregion u-mode eigenvalues and eigenfunctions. This mode data will
implicitly contain the effects associated with individual layers in a given subregion,
reducing the required analysis to the subregion level for each two-dimensional section.

Consider propagation in a multi-dielectric-layer parallel-plate transmission-line
structure shown in Figure 2.2 [cf [12], p. 847]. This is a classical Sturm-Liouville eigenvalue
problem [18]. To find the eigenvalues (propagation constants) and eigenfunctions (mode
functions) for propagation perpendicular to the plates (y-direction), we apply the
transverse resonance technique in this direction. Each layer can be then considered as a
portion of a lossless transmission line with modes propagating in the y direction, as shown
in Figure 2.2. These modes are referred to as y-modes because of their direction of
propagation. The voltages and currents on the transmission lines are directly related to
the mode functions, and hence the y-mode electromagnetic fields.

Normally, the choice of modes would be transverse electric (TE) and transverse magnetic
(TM) to the direction of propagation (y in this case). However, alternative representations
using modes that are either TE-to-x and TM-to-x or TE-to-z and TM-to-zmay lead to
simpler (and computationally more efficient) representations under particular conditions
such as subregions or sections with uniform dielectric constants. The choice of
representation is discussed further in Section 2.3.2.
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Figure 2.2 Equivalent transmission line network for y-mode analysis

TE and TM-to-y modes are used in multilayered dielectric subregions since there is no
coupling between TE and TM modes at dielectric discontinuities, resulting in a more
straightforward analysis. For this choice of eigenmode, the characteristic admittance of
layer I with relative dielectric constant ¢; is given by

'

Y} =L for TE-to-ymodes
oy
Y; = wgp & for TM — to— y modes
k
Y

where ® = 2nf where f is the frequency, yg and € are the permittivity and permeability
respectively of a vacuum.,

By contrast, TE and TM-to-x and z modes are used only in uniform subregions, which consist
of a single dielectric layer, since TE-TM mode coupling would otherwise occur at dielectric
discontinuities between layers. For uniform subregions, similar admittances can be defined
for TE, TM-to-x and TE, TM-to-z modes as follows

Y; =% for TE—to—x, TE —to— z modes,
k)’l
.k
Y, =—L  for TM-to-x,TM~-to—zmodes
)
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The restriction that these modes can only be used for uniform subregions is reflected by the
fact that the dielectric constants for individual layers are no longer contained in the

modal admittances.

As stated previously, the propagation constant in the y-direction for the Ith Jayer, ky, is

related to the propagation constant k;; by
2 2 2
kyl = kOEI - ku .

The subregion analysis proceeds by first assuming the maximum possible value of ky. The
admittances of the transmission lines shown in Figure 2.2 are evaluated for each y-mode.
Using these admittance values, the modal voltages and currents used to construct the mode
eigenfunctions are calculated at the interfaces of each layer. Depending on the boundary
condition (electric or magnetic wall), either the y-mode voltage or the current is set to zero
at the lower plate. If the value of ky is such that the voltage and current at the top plate
satisfy the required boundary condition, then ky is a valid wavenumber, otherwise the
value of ky, is iteratively adjusted until the boundary condition is satisfied. Note that
this method is preferable to using the usual method of finding a resonance [4] in the total
admittance found by summing the transmission line admittances in two directions at an
arbitrary plane, because the voltage and current remain finite whereas the admittance
may approach +eo. The search for valid mode solutions is considerably more difficult with
the presence of poles.

The y-mode voltage and current at the end of the line representing the Ith layer are
obtained from the voltage and current at the start of the line by

Jj .
Vl+1 = COSkyld Vl - -}—,;-Slnkyld Il

Ijy1 =coskyd Iy — jY; sinkyd V).
with the signs consistent with the convention shown in Figure 2.2.

For a given y-mode, the admittance matrix for a length, d, of transmission line
representing layer [ is

-Y; (coth ayd+jcot By,d) Y, (cosech ayd+j cosec ,By,d)
Y=
Y; (cosech ayd+j cosec,By,d) -Y (coth ayd+ j cot ﬁy,d)

where Y] is the modal admittance of the Ith layer for ky1 = By + joy1.

Using the appropriate admittance, the transmission line parameters V'y(y) and I;/(y) are
used to construct mode functions which represent the electric and magnetic fields of
TE-to-y, TM-to-x, and TM-to-z modes. Similarly, the parameters V;(y) and I;(y) are used
to construct mode functions which represent the electric and magnetic fields of the

TM-to-y, TE-to-x, and TE-to-z modes. Because these parameters are used to represent
propagation in the y-direction, they are termed the y-mode voltages and currents.

The amplitudes of the transmission line voltages and currents used to define the y-mode
mode functions are normalised to yield the following orthonormality relations:

[V, o ordy=,
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2.3.2

for TE-to-y, TM-to-x, and TM-to-z modes,

wa L, I (*
T
n £(y)

i

for TM-to-y modes and

[ Lon o*dy=3,

b1

for TE-to-x and TE-to-z modes. In the above expressions, 8,']' is the Kronecker delta,
* denotes the complex conjugate, and y; and yj,1 are the lower and upper edges of the

layer. The phase ambiguity in the normalisation’s allows the choice of Vy(y) to be

always real, and Iy(y) to be always imaginary.

The orthonormality of V;/(y) and I;(y) are used in Section 2.3.2.2 to calculate the mode

coupling between adjacent regions in order to represent the entire two-dimensional cross
section.

Two Dimensional (Section) Analysis

Section 2.3.1 has described the subregion analysis which is used to reduce the problem of
analysing the various x-y cross-sections of the structure to the subregion level. The effects
of individual layers are implictly included in the y-mode and u-mode propagation
constants and mode functions. The remainder of the two-dimensional section analysis is
concerned with combining subregions into sections.

The two-dimensional analysis described in this section can be applied to a wide variety of
waveguiding structures including dielectric guides, finline, microstrip, and coplanar
waveguide. The results of the analysis of a range of waveguides are presented in Section
3.1. The z-mode propagation constants, k;, can be determined, along with the modal
fields. These fields can be used to calculate user-defined z-mode impedances, and to
calculate the z-mode coupling between connected sections. This coupling is used to cascade
the sections to construct the entire waveguide element.

To fully describe the fields for modes propagating in the z-direction in a given section
(z-modes), the transverse resonance technique is applied to an equivalent transmission line
network representing propagation in the x direction. The modes represented by this
network are referred to as x-modes because of their propagation direction. The previously
determined y-mode fields which were determined using transverse resonance in the y-
direction are combined as weighted sums to generate the fields of each z-mode in the

section. The propagation constants of the z-modes are kz1 (m=0,1,.. N;), where N; is

the total number of z-modes to be considered. Ideally, an infinite number of modes exist,
but this number must be truncated for practical purposes.

The x-mode voltages and currents in the x-mode network defining the contribution of the

nth y-mode fields to the total fields of the mth z-mode are V" and I''"". Figure 2.3 shows
y x x gu

the x-mode transmission line network for a simple ridged waveguide cross-section. Note
that in general, the transmission lines representing individual x-modes in each region are
now coupled at region interfaces. The boundary conditions at the sides of the cross-section
determine how the x-mode transmission lines are terminated. The terminations are short
circuits for an electric wall, open circuits for a magnetic wall, and the characteristic modal
admittances (match) for an open boundary such as in a parallel-plate transmission line.
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Figure 2.3 Ridged waveguide cross-section showing x-mode transmission line network

The x- mode and y-mode voltages and currents are combined as follows to represent the
components of the fields transverse to the x-direction

E=Eyu,+Eyu,+Enu,

= Eyuy, + Epur

where
N, Ny
Er=7 Y Vi"(xet(»2)
m n

and
H=Hyu, +Hyu, + Hyu,

=H,u, + Hruy.
where

N, N,
Hr =33 17" (x)h}(3:2)

m n

Ny and N; are the number of transverse eigenmodes and the number of z-modes

respectively. The modal fields er% and hl% can be derived in terms of the y-mode voltages

and currents using the expressions derived in Appendix I. The three choices of eigenmodes
discussed in Section 2.3.1, ie, TE and TM to either x, y, or z, have features relevant to a
discussion of the section analysis. The facility to choose from among the three possible
types of mode functions is useful to characterise the z-modes in the structure, to allow
various types of excitation to be applied in a straightforward fashion, and to improve
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efficiency. In particular, each choice of eigenmode type has specific advantages in special
circumstances. These advantages include:

(i)  For regions with layers of different dielectric constants (i.e. dielectric interfaces in
the horizontal or x-z plane), TE-to-y and TM-to-y modes must be used. Of the three
choices, only these modes have the property that no coupling occurs between different
modes at dielectric interfaces, simplifying the subregion analysis of Section 2.3.1 for
multilayered subregions. The lack of coupling arises from the orthogonality condition in
the definition of the modes.

(ii) To simplify the analysis of sections containing dielectric slabs with interfaces in the
vertical or y-z plane, TE-to-x and TM-to-x modes can be used, since no coupling occurs
between the TE and TM modes at dielectric interfaces that are normal to the reference
direction for the modes. As discussed in Section 2.3.1, the subregions in the section must
uniform, otherwise there will be coupling between TE and TM-to-x y-modes at layer
interfaces. Coupling between mode functions in different subregions results only from
discontinuities in the conducting boundary of the section rather than from changes in
dielectric constants, making these modes an ideal choice for selected dielectric
waveguides.

(iii) For sections filled with a medium of uniform dielectric constant, TE and TM-to-z
modes are uncoupled. Therefore, this choice of modes can lead to considerable savings in
computational overhead arising from simplified mode coupling between subregions. In
addition, the z-modes subsequently calculated using the x and y-modes in each sections can
be readily identified as TE or TM-to-z, which can simplify the physical interpretation of
the results.

A number of two-dimensional transverse resonance analyses have been developed including
those described in [12], [13], and [19]-[25]. Although varying significantly in detail, the
general procedure is similar in all cases.

2.3.2.1 Mode Function Derivation

In this section, the components of x-mode fields transverse to the x-direction are related to
the voltages and currents on the y-mode transmission lines. This step is essential for
combining subregions into a complete two-dimensional section using the transmission line
network discussed in Section 2.3.2.

The general technique used to generate the mode functions follows Felsen and
Marcuvitz [10], and is derived in Appendix I. The derivation of TE and TM-to-y mode
functions is presented in this section, with the corresponding derivations for TE, TM-to-x
and TE, TM-to-z modes included in Appendix II for completeness.

TE-to-y modes

Since ey = 0, the modal fields transverse to x are
e:(ra) =€, (y)e 7z,
he(2) = B (y)e 20, + B (e "z,

where e;( y), h'y (y) and h; () are field coefficients which depend on y only and the prime

indicates a TE mode. Following the derivation in Appendix I, the transverse components of
the modal electric and magnetic fields are related by

: \AY
kY hp(yz)= we[l, + 122 ’:l eu, Xer(yz)

11
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Writing the field components explicitly and cancelling the e’kzZ factor yields

v - we(( 3 2 8'
k.Y (hu,+h = | —5+k ik, —%
oY (hyuly dz) 2 [(ayz ]ezuy JRz Jy J

i +k% e, = (2 k2e+(k2 k2)e.
ay a}’ Z Z

Using

'

= kfez

and choosing the arbitrary admittance factor to be

. kf
k, ou

X

then the following relationships between the electric and magnetic field components
transverse to x emerge

and

h =J_k24951
ky 0y

The field quantities can be related to the voltages and currents on an equivalent
transmission line network as shown in Figure 2.2 by setting

€, = V'y(y)

This allows the magnetic field components to be specified as

hy=_vy(y)
and
ik, d
h=3%2y
(=43 VO
k,ky 1
=50 L)
k3 Yy A

since, according to transmission line theory,

d 1 1
—V,(y) =—jky,—1,(y) = —jko—1
& () Tky y() JOYO v(¥)

12
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TM-to-y

Proceeding in a manner identical to the TE-to-y mode treatment and using hy =0, the
modal fields transverse to x are

hr(y 2)=h"(y)e_jk ‘u,

14 " —-jk
er(r.2) = e,(Ne Kztuy +e,(ne 7%,
where hZ" (), e;(y) and e;(y) are field coefficients which depend on y only and the

double prime indicates a TM mode. Following the derivation in Appendix I, the transverse
components of the modal electric and magnetic fields are related by

" 1 1
kyZyer(y.z) = w[ﬂlt 7 Vi —

£(y) Vt] *hripxay

Writing the field components explicitly and cancelling the e K22 factor

op(fd 1 9 19k,
k, z ky |hu k, ——=—u
(eylly +6211z) [(ay Sl(y) ay —+ Oj U y —J 81(}’)8}’ u,

A simplification can be made using

9 1 3 ) @ 1 oh .o h
— —t+ky |=—=2 K J—+ke() ky | ——
(@mww ) O (o)) (ke ) )

"

=k3ﬁ1

]

since g/(y) is constant within each layer. By choosing the arbitrary impedance factor to be

" k2
Z, =
k,we

then the following relationships between the transverse electric and magnetic field
components emerge

and

The field quantities can be related to the voltages and currents on the equivalent
transmission line network by setting

hy = L(y)

This allows the electric field components to be specified as

13
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. L
o= y()
y g
and
v o—jk, 1 d o
e, = ——1,(y)
LR gdy”?
k. k "
=—_i2_OY0Vy(y)
U

2.3.2.2 Mode Coupling

The x-mode fields inside each subregion can now be expressed in terms of y-mode
transmission-line voltages and currents. To complete the analysis of a complete section,
subregions are stacked together horizontally and the coupling between x-modes in adjacent
subregions is evaluated. This coupling satisfies the field continuity across the subregion
interface shown in Figure 2.4. The evaluation of this x-mode coupling at subregion
interfaces is discussed in this section.

Mode functions in adjacent subregions will be coupled at discontinuities in the conducting
region boundaries or dielectric constants between the two subregions. This coupling can be
evaluated from continuity of the transverse electric and magnetic field components in the
y-z plane of the discontinuity, and from the boundary conditions. Consider an interface
between simple regions each consisting of a single subregion, where a change in the region
heights or dielectric constants occurs as shown in Figure 2.4.

£
BS

Region interface

hA SAZ
A
(l\y)+ A i 1 Y

Region A Region B

Figure 2.4 Simple region (or subregion) discontinuity
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From the definitions of the x-mode voltages and currents stated previously in the
introduction to Section 2.3.2, the field components in region A tangential to the
discontinuity are given by

N, N
Er, =, > Vi'(xel, (0,2
m n

N, N}
Hr, =), ) I/ (0OhT, (12
m n

and similarly for region B

N, N}

Er, = > Vi (0er, (02
m n
N, N}

Hy, =3 3 " oh}, 0,2
m n

where the summation is over both TE and TM eigenmodes. The ratio between the number of
y-modes in regions A and B is determined by the relative convergence criterion

A
Ny _ha
Nf hg

Relative convergence and its explicit role in the solution of characteristic equations
encountered in general mode matching analyses is discussed in detail by Leroy [26].

The field matching at the discontinuity requires that

Er,, over aperture
= A’
E Tp {0, otherwise

and

Hr, =Hr, overaperture.

By equating the modal expansions for the fields in regions A and B in the aperture, the

coupling relations between the x-mode voltages V‘R‘;(x) and Vrg;l(x), and between the x-

mode currents IIRI;(x) and Iné:(x) can be evaluated for the mth z mode for all m. This

procedure was followed to determine the coupling relations for each of the three types of
basis modes, ie., TE, TM to x, y, and z. The coupling expressions were adjusted into a form
that guaranteed conservation of complex power across the discontinuity for a finite number
of mode functions in each region, while still maintaining the field matching for the ideal
case where an infinite number of mode functions are used. In the following section, the TE
and TM-to-y mode function coupling expressions are derived. The procedure is to first
match the two transverse components of the electric field (the y-component and the z-
component), using the appropriate orthonormality relations to simplify the expressions
and then repeat the procedure for the two transverse components of the magnetic field. The
corresponding derivation for TE, TM-to-x and TE, TM-to-z-modes is given in Appendix III.
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Electric Field Matching

y-component

™ P
A’i Vnmn IB (y) Ivi V"'"P IAy (y)
" B: ¢ B(Y) ’ A £4(y)

W«
After multiplying both sides by IBy(y)* and integrating along the region interface
extending from yj to y;, =] + ha as shown in Figure 2.4, the orthonormality relation

I — *d
j()m(wy

allows the coupling between the x-mode TM voltages to be determined

yj-l 'L (}’)
M A(y) @

NZ“
14
m

-,y
¥4

AORNC)
where A, = J.Ly———ﬂ—d
o €4
z-component
NTE NTM km
rmn_ n a) nmp np
Zazmrz#—% Vg, (3)
P Tupg
NTM
vmi_ i kma)g
= Z Va, Va, - 2 2 Qv VA »
”jA

no,
After multiplying both sides by VBy(y) and integrating along the region interface, the

orthonormality relation

hoi
fo V,(0)Va, () dy=§,

allows the coupling between the x-mode TE and TM voltages to be determined

(08
Z.ﬁ%!%w%m@
”PB 7]

NiE
-me%mmwwz j%mmw
N J "fA Y

nmj
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which can be written using suitably defined matrices F, C, and D as

N N N :
Vs -2 F,V, Zcmv -yD,V,
14 J
where
k”‘wso

F, -85 [v; (3)'v; ()dy

“pg i

Yy _
C - [Va )V, dy
i
m Yu
WE o * i
D, === [V, O)' Vi ydy
Ujp N
In anticipation of later modifications to ensure complex power conservation across the

region interface, a matrix @ is defined by

" we
®,, = =<2 f Vi, ) Vi, ()
“pa Nl
Magnetic Field Matching
y-<component
NTE

A mn NIT;E «mp . p
2 14, Va, =X Ip Vg ()
n p

After multiplying both sides by V Ay (y)" and integrating along the region interface, the

orthonormality relation
Ya o i v
[ Va0, dy=6

allows the coupling between the x-mode TE currents to be determined

NTE
1;,",”-21 j Vs (3)' Vi (0dy
N;E *® _mp
=2Cpn IB,
p

where

yll
C,.= [V. 0V, ()dy

N
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z-component
NTM NTE
Jre _z_L i I
Z A, (x)A <y>+2 A, <x>A<y)
h P Tup,
NTM TE
[0
-3 Iy, (x)IB () + 2 JﬂIB <x>IB )
i J Ujp

Wl
After multiplying both sides by I Ay(y)" and integrating along the region interface, the

orthonormality relation

[ola, ) ——1I4 (' dy=5

eA()

allows the coupling between the x-mode TE and TM currents to be determined as

NTE yu wn * |p
EC EA: K" opg m f Iy, ) 14, ) b
A 2 £4(9)
14 Upa b]
N L ) T « Iy () Iz (¥)
=2 n Ay(z)(iy(y)d” 2 ot K o I : (l: ~
i Vi AV J Ujp Y Y

which can be written using suitably defined matrices I'; A and Bas

NF Y
t mj

X"” + 2 z A mIB + z Bn_]IB

where

_ Koy, } LY ) J

T, -
’ k,,“ Y £,(y)
J-I I, ()’)
5 EA(y)
g = a)u 21 () I, (}’)
ny k"jg % A()’)

In anticipation of later modifications to ensure complex power conservation across the
region interface, define a matrix G is defined by

kmw Yu - p
Gpp =0 [ I, )" L5, ()dy

Upg i
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2.3.2.3 Complex Power Conservation

The condition that the transverse electric and magnetic fields be exactly matched across
region interface discontinuities will only be satisfied in the ideal case where an infinite
number of x-modes are used. For practical purposes, the number of x-modes must be
truncated to a finite number, so that exact field matching cannot be achieved in general.
However, a physical constraint that power flowing through the region interfaces must be
conserved can be enforced on the field matching for an arbitrary finite number of x-modes.
That is, the power transmitted in the x-direction from region A must equal the power
received in region B, and vice versa. Both the real and imaginary components of the power
flow are matched at the interfaces to enforce this most fundamental physical constraint on
the x-mode coupling at region interfaces. This general procedure has previously been
applied to a two-dimensional mode matching analysis by Mansour and MacPhie [27],
although only in homogeneous structures. Omar and Schunemann [28] have shown that
conservation of complex power can be applied to inhomogeneous structures, and that it
follows directly from field matching. This conclusion has been verified by this work.

By constructing column vectors for the x-mode voltages and currents for the mth z-mode
(with the TE and TM components separated), and using the matrices defined in
Section 2.3.2.2, the coupling expressions from the field matching can be written in matrix
form as

(V] [ e ! o TV
|- Vs, |- Ay

| v - I o

[ 0 T Vel L O | A ]V,
o ] [t ! o ™
| In, | Ig,

r | I Inm - | A* Inm

. | dtIa,d L B R

The power flow through the region interface on either side of the discontinuity for the mth
z-mode is determined from the fields in region A and region B using the x-mode voltages
and currents as follows

jE xHTA eu,dy

NANA
)‘ y yu
ZZVZ'"IA"” JeTAxh ouxdy
n.p b/]

m yu m m*
= J'ETB XHTB -uxdy

’""Ig’p I €7, xh oux dy
/]

va

A
Zy
n
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For any given region, e% and hq* may be split into TE and TM components and the integral
evaluated using the previously defined mode functions as follows

Yu - vp* Yu o -p* vp*
jeT xhy euydy= fez u, X(h, uy+h, uy)]euydy
V] ]
Yu o P x
= [ e, )k, () dy
Y
Yu
_ " Pk
= [V, oWy ' dy
Y
= an
yu nn * yu nn " np*
IeT th eu, dy= I[(ey uy +e; uy)Xh, ug]euydy
] B 7]

Yu " " N
= [ ey Ry ()" 1dy

i

j (y)l (y)
£(y)
= 5np
Yu o Ye n o D
J.eT xhy ouydy= f[(ey uy +e; uz)x(hy uy+hZ u,)]euy dy
Y i
Y P % P
= [ley Ok, 3) —e; Why () 1dy

i

'p *
I * yu "l '
_k w,uo J- ()’) y () dy— k, c'z')zeo J-Vy (y)Vyp ) dy
u Er()’)
P Un N
Yu n "p*
jeT XhT Ouxdy=0
B/
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The coupling between the modal fields in regions A and B is required to be such that the
power coupled from region A to region B is the same as the power coupled from region B to

region A. For region A

— ot -
am | +
IAx I l F '@
P‘Xx JU (R Y S —
e [ !
A, L 0 _
_ -t -
am [
|| € | B
- o [
| s, L O | A ]
_ ot
o[ c | ptcrt
X
- o i
L Bx_ | 0 [ A
ot
|
Iy c | pt-co
P
B o |
- Bx_ L 0 I A
and for region B
I, —
am (N
IBx I | G'-F
1S LT [ I
Bx N |
s, 1L O | T
~ -t~ -
m | 4
IBx I | G'-F
- o |
s, L 0 | T |
_ =t~ -
[m | +
IBx I | G
- e |
[ s, L O | I |
—
|
Iy C |G'AD
X
- o |
- Bx_ L. 0 I A

So to ensure conservation of complex power for an

following substitutions must be made

m
Tl
[ Va,
i |t r 1 e [V
I R | R
] | I
| o | 1 Lo | 1 [ V),
. | - m
1 |r'f-q> Va,
| et
dL o | T | Va,
m m
Vs,
oin

| Va,

™ m

Vg,

oI

| VB,

1 ! F T c ' b =~
| I- Ay
| | wm

o, 1 0 | A || Va,

C | "D VAx
| T¢08

| 0 | A [V,

m
m
Va,

arbitrary number of x-modes, the

B —»GtA
D -»Co

For these substitutions to have physical relevance, they must be automatically satisfied
for an infinite number of modes, showing that the fields on each side of the discontinuity
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will still match if infinite modes are used. This can be shown using the completeness of an

infinite set of eigenmodes as follows

™ ng n *
NB " jm oy IBy (y)IBy )

"p nq
Yuly, (Y)g (¥
u Ay(y) By(y)

GA] = z dy
9 TUng
v % "D ™ "4 ngq
m, YuVul I (v INM Iy
_ Koy 1t 5,0 14, 0078, 15, O) By(y)dydy'
12 1
€4(y) eg(y)

Ungp Y1

n x np
m Yu I I
_ kz 0L By ()’) Ay (y)

12 EA(yv)
Vi

= [ﬂT]np as required.

Similarly

NIEy,

dy

(COlp= Y, [ Vg )V Oy K260 j Ve 00 V) 6Dy

9 y

kmw Yu Yu

"PA b/

Ups i

< [ [ Ve, o)V, (y)z Vi 0 Vg )y dy

=2 5% f VB ) VA ) dy

“PA N
=Dy, asrequired.

The final form for the coupling which guarantees conservation of complex power for any

number of x-modes in each region is therefore

- | U m
I | -F VBx

| wm

L 0 I [VB,
B | qr .m
L0 FIAx

| Inm

L T Tl A,

2.3.24 Constructing Admittance Matrices

B | ar.m
C I 'C(I) VAX
| Vnrn
. 0 | A L Ax
B | qF.m
1
C | 0 IBx
| ey
t t
| Atc | At [T

So far, only simple region interfaces have been considered, i.e. regions that do not contain
subregions separated by conducting boundaries. At this point, it is necessary to consider
more complex regions consisting of more than one subregion such as shown in Figure 2.5. The
procedure is to calculate the two-port x-mode admittance matrices of the subregions in a
given region, calculate the coupling matrices for the interfaces between connected
subregions, and then combine the admittance matrices and the coupling to produce a new
admittance matrix for the region which now includes the coupling to other regions. In this
manner, a series of multiport admittance matrices can be constructed to represent each
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region in a given section. When cascaded together in the correct manner, these admittances
represent the entire section under consideration. Note that the independent subregions in a
given region are vertically aligned but separated by conducting metal surfaces, so that no
y-mode coupling exists between them.

subregion

interface

€
ST

region A region B

Figure 2.5 Complex region interface with independent layers

The coupling expressions relating the x-mode voltages and currents for the mth z-mode
between connected subregions as derived in Section 2.3.2.3 are used in the form

~ | -
A, 0 | P ||V},
Vrlx;x Py : 0 I[]!;x

for "step-up"” transitions (height of subregion A smaller than height of subregion B), and

Va, 0 | Py || 1},
|
Iré‘x L PI I 0 _] VI;x

for "step-down" transitions (height of subregion A larger than height of subregion B). Pj
and Py are the current and voltage couplings, respectively. These coupling expressions are
listed in Appendix IV for the various choices of eigenmode types in subregions A and B.

The coupling expressions above show that currents in the smaller subregion can be
expressed in terms of currents in the larger subregion, but not vice versa. This is because of
the lack of a suitable constraint on the tangential component of the magnetic field of the
larger subregion on the aperture wall. Since magnetic field matching can only be
considered over the aperture itself, it is only possible to determine the currents in the
smaller subregion from the currents in the larger region. To determine the currents in the
larger region from the currents in the smaller region requires the nonexistent magnetic field
boundary condition on the aperture wall.

Such a boundary condition does exist for the electric field however, namely that the
tangential electric field is required to be zero on the aperture wall. This condition is used
to derive the voltage coupling relating the voltages in the larger subregion to the voltages
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in the smaller subregion. However, if the tangential electric field must be zero on the
aperture wall then an arbitrary electric field is not allowed in the larger subregion.
Therefore, it follows that a coupling expression relating the voltage in the smaller
subregion to an arbitrary voltage in the larger subregion cannot be defined. These
considerations are also discussed in [28]. Note that it is possible to numerically invert the
coupling matrices to circumvent this problem if the same number of x-modes are used in
each subregion. However, not only does this approach violate relative convergence, it also
leads to a very ill-conditioned formulation.

A subregion with a two-port modal admittance matrix Yg contained in a given region
which is coupled to M subregions in a region on the input (left) side and N subregions in
another region on the output (right) side is shown schematically in Figure 2.6. The

voltage and current couplings at the mth input port are written as P";l_ and P}’.l
4 i

respectively, and the corresponding couplings at the nth output port as P{} and P}’
o o

respectively.

input output
&
R3] Y
= S

V V

&% S 5
g i 1°
2 S 5
o
=

© B0y
To subregionsonright

Figure 2.6 Multiport admittance block constructed from two-port subregion coupled to other subregions

The voltages at the parallel outputs of the coupling ports sum to yield the total voltage at
the subregion admittance ports. Therefore, using the x-mode voltage and current coupling
expressions, the voltages and currents at the input and output ports of the subregion were

given by
.M
Vg = 2 P";’_ v for "step —up" transition, undefined otherwise.
I3
m
N
Vg = 2 Py V) for "step —down" transition, undefined otherwise.
[
n
I lm = P;'?Ig for "step —down" transition, undefined otherwise.
13
I =P Ig for "step — up" transition, undefined otherwise.
(7]

The restrictions discussed previously relating to the boundary transitions that may be
represented by the coupling expressions do not, in practice, restrict the geometry of
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structures that can be analysed. Any arbitrary cross-section can be divided such that all
the region couplings are included at the input or output ports of the subregion admittances
as required. Step-down transitions are assigned to the output of the adjacent subregion to
the left, while step-up transitions are assigned to the input of the adjacent subregion to the
right.

The current at the input and output ports of the subregion, Ils and Ig, can be expressed in

terms of the input and output voltages, VIS and Vg using the two-port subregion admittance
as

I§=Yg Vs+Yg V§
Therefore, the current at the mth input port can be written as
M N
m _ pm n yn m 14
I"=PrYg, PV +P] Y., vao 44
n p
Similarly, the current at the nth output port is given by
M N -
n n mysm n
Ig=P] Yg D PUVI"+P[Ys > Py V)
n p

Therefore, a multiport admittance matrix which represents both the subregion and the
coupling to regions on each side containing multiple subregions can be defined

1] v)T]
: I .
™ [Ymoo! | [Ymo1] V?’I
o | o
lo [Ymiol | [Ympil]] Vo
LN v

where
Ym0 =P7, Y5, Py,
Ymor =P; Y, Py,
YM% = P?OYSIOP\I;,-
Ymii =P, Y, Py,

2.3.2.5 Cascading Admittance Matrices

The admittance matrices derived in Section 2.3.2.4 which contain both the subregion
modal admittances and the associated couplings are cascaded to represent an entire
section. The cascading of two multiple-port admittances Y5 and Yg to form a single
multiple-port admittance, Y¢, as shown in Figure 2.7, is similar to simple 2-port
admittance cascading.
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Figure 2.7 Multiport admittance cascade

The currents at the input and output ports for admittance Y4 are related to the voltages by

N N
_ np nqy,
I, =Y YacoV,+ 2. Yapivy

14 q
' N N '
Iy =Y YAV, + 2 YAV
p q
and similarly for Yg
[ N t N" "
~I, =X Y0V, + 2. Va1V
P q
" N [ N" "
I, =Y YpiiV,+ 2 Yai{V,
P q

In matrix form
1=Y 00V +YaoV
T'=Y 0V +Ya;,V = YpooV +Ygy V']
I'= Yg,,V +Yg,,V"

Substituting for I

Yy + YBoo V' =~ YasoV+ Ve, V']

Defining

-1
Yiny = [YA11 + YBoo]
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and substituting for V' allows I, and I" to be determined in terms of V, and V"
I= YA()() - YAolYianAm]V - YA()1YianBo1V"

In matrix form

B {
|:[] YCOOIYC01 [V]
I'l | V"
| Yc10 | YC11
B !
[YAOO -Yaq1 Yinv YA1(J] I -YAo1 Yinv YBg1 \Y
| ":|
-YB1g Yinv YA 10 | [YB11- YB1g Yinv YBo1l

2.3.2.6 Junction Admittance Calculation

By applying the multiport admittance cascading discussed in Section 2.3.2.5 in an
appropriate manner, the section to be analysed can be reduced to two multiport
admittances Y[, and YR representing the structure on the left and right sides of a junction
plane. The position of the junction plane can be arbitrary, but is usually set at the left side
of the region containing the subregion with the minimum number of y-modes. This
subregion is termed the junction subregion. Selecting the subregion with the smallest
number of y-modes improves computational efficiency. This situation is shown
diagrammatically in Figure 2.8.

A two-port admittance matrix Yj for the junction was determined in order to apply
transverse resonance to the two-dimensional section. This two-port is constructed from the
admittances "seen” by looking to the left and right of the junction plane. By definition, the
junction subregion is at port nj of YR and port nj of Y1.. From the definition of Y-parameters,
the current at the nth port of Yy is given by

N
n _. Npy,P
7= Y/vy
p

and similarly the current at the nth port of Yg is
N
n _ npy;P
Tr=2YEVk
p

Connecting all the ports of Y] and YR except for the junction port, nj, leads to

IZ=—I§ and V£= Vl’é forn#nl.
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I junction subregion

electric wall (short)
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Figure 2.8 Reduction of cross section to 2-port junction admittance

The input and output currents for the junction port, IZJ and IZJ , are given in terms of the
voltages at the other ports by

N
ny _ nyp<,p
ILJ—ZYLJ VL
p

N
_ njnj nJ an D
=YV + Y YVE
p#ny

N
— yunyyns njpPy,P
=YV + Y YPVE
p#ny

I;éf— nJ”JV 2 yuPy
p¥*ng
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Now consider the currents at the nth port of Y for n=nj

IZ nn J Z

p#ng

and similarly for YR

N
IR=YR Vg + D YFVE

p#Eng

Therefore, since IZ = -—I?g for n#nj,

ARy Ny nn; np npyysP
Y[V + YR VR Z[YL +YFIVE

p#ngy

Define
-1

Yipy =A
where

Anp = [sz + erép] for n,p #nyj.

so that for n#nj

_ 2 Y"Pry [ pny VZJ + Y}gnl VZJ ]

iny

p¥ny
Hence, substituting for Vﬁ (nzny)
N N ]
ny _iyWhs _ njPypPqyany nypypqydhy [y
I YL z ZYL Yva 2 ZY Yva V
p¢n_, qinJ ] p;f:nj q;tn]

nJ - z ZY”JPquan.I V"J+ ”J”J Z Z ”JPYPqu"J V"J

iny iny
p#njyqg#ny p¥Fnyq#ny

So the 2-port admittance matrix representing the junction is

I
1) Yioo | Yjou || v

| _
I} Yi0 | Y VR
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where

N N
— | yn njpypqyaiy
YJoo‘ Yo - Z ZYL VXL

p#n,q#nl
N N
- NPy pqy Ity
YJOI_ Z ZYL YianR
p¢n1q¢nj
N N
- nyPypPqyaiy
Ypo=- 2 XYPYhlY]
p?':njq;énj

N N

_| yns _ njPypqyats

Y =Yg >, X Yfrhivg
p#njq¥#ng

If port nj of Y and YR are connected together and for there to exist a solution in the absence
of an excitation source corresponding to a mode of propagation, then

I =-IY and V}’ = Vg
Therefore
n n
(Y700 + Y7010VE =—1¥510+ Y511 1VR

Hence, a physical value for k;” is obtained when the following transverse resonance
condition is satisfied

[Y700+Ys01 + Y10+ Y,H]V;;J =[Y""Vg/ =0

2.3.2.7 Numerical Techniques for Solving the Transverse Resonance Condition

To complete the section analysis, the propagation constants for the z-directed modes, or
z-modes, must be determined. This is achieved by performing an iterative search for k;
values which satisfy the transverse resonance condition derived in Section 2.3.2.6. Two
markedly different search methods were used here to determine the k; values satisfying
the transverse resonance condition, depending upon whether the required z-modes were
propagating or evanescent (purely real or imaginary k;), or complex (complex k).

Propagating or evanescent modes

To find the propagation constants for purely propagating and evanescent z-modes, an
iterative search for both zeroes in the determinant and minima in the minimum singular
value of [Y5%™] was conducted by decrementing k; from some initial value. The minimum
singular value of [YS%™] was found using matrix singular value decomposition [29], a
technique first applied to the analysis of two-dimensional microwave and millimetre-
wave structures by Labay and Bornemann [30]. Figure 2.9 shows a typical z-mode solution
corresponding to a minimum (zero) in the minimum singular value and a zero in the
determinant of [YS¥™]. Note the determinant pole located close to the zero crossing. This
was a common feature of the behaviour of the determinant near z-mode solutions, and
prompted the use of the more well-behaved minimum singular value. It must be noted that
the minimum singular value was not entirely reliable on its own because of extremely
narrow minima sometimes encountered. Such minima cannot be detected unless
prohibitively small k; search step sizes are used. For this reason both the determinant
and the minimum singular value of [Y$¥™] were used to ensure the reliable identification of
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valid k; solutions. Instances where both the determinant and the minimum singular value
were not well-behaved near a given z-mode solution were rare.

The following strategy was adopted for finding propagating and evanescent z-modes:

(i) Start with a value of k; no larger than kg, lermax , Where G,max is the maximum

dielectric constant in the section. Do a coarse search by stepping in the direction of
decreasing k;, with a specified step size. Look for minima in the minimum singular value or
a change of sign in the determinant of [Y5¥™]. Closely-spaced zero-pole pairs in the
determinant which may not result in a change of sign over a coarse step can also be
detected.

(ii)  If a possible solution is detected during the coarse search, a prediction of the
location of the solution is made and a fine search initiated over a range of one coarse step
either side of the estimated position of the k; solution. The fine step size is typically set
to 1/10 of a coarse step. As for the coarse search, look for minima in the minimum singular
value or a change of sign in the determinant of [Y5%"].

A

minimum singular value

l

determinant

e

z-mode solution
pole

Figure 2.9 Typical z- mode solution
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(iii) If a possible solution is detected during the fine search, an attempt is made to use a
quadratic fit to the minimum singular value of [YS#™] to estimate the position of the
solution. If this k, estimate corresponds to a minimum in the minimum singular value then
an iterative procedure based on the Brent's method is used to refine the k; value [31].
Otherwise, a quadratic fit is performed on the determinant to estimate the position of a
possible zero crossing. If a determinant zero crossing is detected, then the k; estimate
obtained is refined using a procedure based on the method of false position [32].

(iv) Before acceptance of the k; value, a final check is made to ensure that it
corresponds to both a zero crossing in the determinant and a minimum in the minimum
singular value of [YS¥]. If the solution is valid, the next z-mode is sought using the same
procedure. If the fine search is not yet at the end of its range (one coarse step beyond the
original estimate of the solution) then it is continued to this limit in an attempt to detect
other solutions close to the last solution. This situation occurs often in structures with
almost degenerate z-modes.

For uniform sections, values of kg corresponding to the z-mode cutoff frequencies can be
found rather than the z-mode propagation constants at a given frequency as described
above for general structures. The search algorithm was identical to the k; search. For the

mth z-mode, the cutoff frequency f Zn was used to calculate the propagation constant kT at a

given frequency using the simple relation

kI =\ JkGe, kT

k0=—20ﬂ and kT,,,=

where

20"
c

Since the z-mode cutoff frequencies were independent of frequency for uniform sections,
determining the cutoff frequencies or k; values at one frequency was sufficient to analyse a
number of frequencies. The k; values obtained at the first frequency were readily scaled for
any number of different frequencies, so that a z-mode search was not required for more than
one frequency. This substantially improved computational efficiency when analysing
broadband structures.

Complex modes

For finding complex z-modes, ie., z-modes with complex kr; values, a contour integration
technique based on Cauchy's Theorem is applied in the complex k; plane to search for
zeroes of the determinant of [Y5%#™]. This technique consists of an integration around
overlapping circular contours in the complex k; plane to determine the number of zeroes and
their location within the contour. This procedure was initially developed for solving
matrix equations by Delves and Lyness [33], and applied to the analysis of microwave
structures by Sorrentino and Lampariello [34].

Cauchy's theorem states that

1 ¢ f@
- [ L%
27rjJz o~

n
o

N, N,
=y -y pf

i=1 i=l1
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where N, and Ny, are the number of zeroes and poles of the function f(z) of the complex
variable z within the contour. z; is the position of the ith zero and pj is the position of the
ith pole within the contour. Interpolation using a polynomial of order 4 was used to
estimate the derivative f(z) from values of the function f(z). By setting n=0, Sop = Nz - Np
is determined. Provided there are not too many zeroes or poles inside the contour, then
with a sufficiently high order of n, the various z; and p; can be determined analytically.
Appendix A.5 describes analytic techniques for extracting the zero and pole locations from
the moments Sy, for a limited number of poles and zeroes within the contour. Larger
numbers of poles and/or zeroes were not considered because of numerical accuracy problems
which stemmed from the fact that, in practice, most of the zeroes and poles occurred in

closely-spaced zero-pole pairs, so that zril - pri1 was small forn=1, 2, 3, ... This was a

fundamental limitation on the effectiveness of this technique. However, complex modes
were generally few in number and widely-spaced in the k; plane, allowing this method to
be used effectively. If too many zeroes or poles were inside a given contour, smaller
contours could be used to cover the same area in the complex k; plane.

2.3.2.8 Section Voltage and Current Calculation

Once the values of kr;l are found for each z-mode for m = 0 to N, the voltages and currents
on the equivalent transmission line network representing propagation in the x direction
can be determined. These can then be used to calculate the actual electric and magnetic
fields in the cross-section for each z-mode, and hence the z-mode coupling at section
interfaces. This in turn allowed sections to be cascaded together to construct the complete
waveguide element.

The first step is to use the transverse resonance condition to solve for the modal voltages at
the junction

ny _ m ny _
[Y,OO+Y,01 +Y110+Y]11]VRJ =[x |vy =0

This equation is sufficient to solve for V;I to within an arbitrary factor. This is accounted

for by allowing one of the modal voltages to be set to 1. If voltage Vp, is set to 1 and
removed from the unknown voltage vector, then the pth column of [Y5%¥™], can be taken to
the right-hand side, and the resulting equation solved for the other voltages using a least
squares technique. The solution is ideally unique, but the least squares approach ensures
robustness to numerical error. In matrix terms, the equation to be solved is

Y00 -+ Yop-1) Yorpe1)--YoN | [ vy | B Yor 7

n] um
Voo [ || Y
Ve Yip+)p

: : : 'n i Ysum
L ygm v v xm Lovy Np —

If this equation is written as A.V = b, then the least squares solution would be found by
solving AtA.V = At.b using standard techniques for linear matrix equations [35].

The modal voltage matrices at the other ports in parallel with the junction, V™ (n#nj), are
found from the junction voltages using this equation from Section 2.3.2.6
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N
vi= Y YRy 4y v

mny
p#ng

where N is the number of ports in the junction plane and
_ -1
Yiny =[¥p +Yg]

The currents at all of the ports in parallel with the junction were determined using YL,

N
I}= Y YPvP=-I}
p#ny

Once the voltages and currents at the ports in parallel with the junction ports were found,
the voltages and currents in the remainder of the cross-section could be determined. For a
step-down discontinuity to the left of the junction plane, the voltage coupling could be used
to determine the voltage on the left side of the discontinuity from the known voltage on
the right side. The current to the left of the discontinuity was calculated by evaluating
the total admittance of that portion of the structure from the left side boundary up to (but
not including) the discontinuity, Yieft, so that I = Yjeft V yielded the required modal
currents. For a step-up discontinuity to the left of the junction plane, the current coupling
could be used to evaluate the modal currents to the left of the discontinuity from the known
modal currents on the right side. As for the step-up case, the admittance of the structure to
the left of the discontinuity, Yjeft, was calculated. The modal voltages on the left side of

the discontinuity were subsequently determined using V = Yl_: £l

Once the voltage and current at the right edge of a region Vyight and Iright were known, it
was a simple matter to calculate the voltage and current at the left edge Viest and Ijeft

usmg

-1
Viett = Y10 [Iright - Y11Vright]
Liett = Y00 Viett + Y01 Vright

where Y is the subregion admittance matrix. Note that Yjj (ij = 0,1) are diagonal. The
next discontinuity (if any) is located at the left edge of the region, so this procedure is
repeated until the left boundary of the structure is reached to determine the x-mode
voltages and currents for the portion of the structure to the left of the junction plane.

The modal voltages and currents to the right of the junction plane are calculated in a
similar fashion, the differences being that the voltage coupling was used to calculate the
modal voltages across step-down discontinuities, while the current coupling was used at
step-up transitions. The admittance of the portion of the structure to the right of the
discontinuity, Yright, was then used to calculate the voltage or current as appropriate.
Once the voltage and current at the left edge of a subregion was known, the corresponding
voltage and current at the right edge were determined using

-1
Vright = Y01 Tieft — Yoo Viett]
Light = Y10 Viet + Y11 Vright

This procedure was repeated until the right side boundary of the structure was reached.
The x-mode voltages and currents across the entire two-dimensional cross-section were then

known.

34




DSTO-RR-0027

2.3.2.9 Section Field Calculation

The modal voltages and currents were used to calculate the fields in the cross-section, as
well as the total power flowing through it. The y and z components of the fields have been
derived previously in order to evaluate the coupling at region interfaces. To complete the
field calculations, the x component of the electric and magnetic fields of the mth z-mode

were derived. EI;I was determined from HI; and Hr;, and HT was determined from Er; and

Erznusing Maxwell's equations, with the TE and TM field components separated as follows

joeye, EY =VxH™ o u,

N ' N" oo
dh . " rmn dh . wn wmn
= 2 _l——d 82 + jkzhy (9) |y (x)+2 —Z'd—(lz+]kzhy ML )
n Y n Y
and similarly for HI;‘:
jougHT =-VXE™eu,
N' tn N" nn
de . n rmn de . nn nwmn
SIS y(y) ke, ) Ve )+, {dy(—” + ey DV @)
n n

The total power PI; flowing through the cross-section in the mth z-mode was determined by

integrating the z-directed power density over each region and summing over all the regions
in the cross-section

Wl .
pPM = j j(Ex HY' —EJ'HY )dy dx
X

All three field components are listed in Appendix VI for TE and TM-to-x, y, and z modes,
together with the z-directed power. For each z-mode, Vn;n and Ir;m were normalised by

setting Pr; to 1 for propagating modes (k; real), and j=+/—1 for evanescent modes (k;
imaginary) and complex modes (k; complex).

2.3.3 Three Dimensional (Element) Analysis

There have been a number of mode matching methods developed to treat
three-dimensional discontinuities. Early work concentrated on discontinuities between
rectangular waveguide sections [36]-[42], while later efforts have been directed toward
more complex structures based on finned waveguides, cross-irises, or T-septa [43]-[50].
Generally, analysis has been restricted to relatively simple, homogeneous structures. The
more general derivation presented in this section seeks to extend the capability of the
mode matching technique beyond these limitations to allow accurate modelling of
microstrip, finline, and dielectric waveguide discontinuities with a single, generic
analysis.

The two-dimensional section analysis described in Section 2.3.2 yields the z-mode
propagation constants and modal fields for a given number of z-modes in each section of the
structure to be analysed. It remains only to cascade these sections together (in the z-
direction) to represent the entire waveguide element. To perform this cascading, it is
necessary to first calculate the coupling between z-modes in adjacent sections using the
modal fields calculated according to the expressions in Section 2.3.2.9. Combining this
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coupling with the scattering matrices for each section allows the scattering parameters of
the entire element to be determined.

2.3.3.1 Mode Coupling

The z modes in adjacent sections are coupled at the interface between the sections. This
interface represents a discontinuity in the section boundaries or dielectric constants. The
z-mode coupling can be determined from continuity of the tangential electric and magnetic
fields in the (x-y) plane of the discontinuity and from the boundary conditions. Consider a
step change between two sections A and B of an element as shown in Figure 2.10.

/.

section interface
./
/ L
&
u € section B
‘ y
/ / %ction A

Figure 2.10 Section interface

Using the two-dimensional analysis discussed in Section 2.2, an equivalent z-mode voltage
and current can be defined such that the fields tangential to the z-direction in sections A
and B are given by

Ng
E,, =D Vi e[, (%)
m

Ng
H,, =Y Ii (Dh) (x,y)
m

Ng
E, =Y. V5 (Def ()
n

NZ
H,, = ) I§ (Dhf, (%)
n

where the summation is over both TE and TM eigenmodes and propagation is assumed to be
in th z-direction.

Assuming that the boundary of section B entirely includes the boundary of section A at the
interface, the field matching at the discontinuity requires that

over aperture

E,
= A’
E, B {0, otherwise
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and

H;, =H,;, overaperture

By equating the modal expansions for the fields in regions A and B in the aperture, the

coupling relations between VX’Z (z) and ng (2), and between IX‘Z (z) and If‘;z (2) can be

determined. This procedure was followed using each of the three mode types, ie., TE,
TM-to-x, y, and z. The coupling expressions were formulated in such a manner as to
guarantee conservation of complex power across the discontinuity for a finite number of
z-modes in each section. In this section, the z-mode coupling using TE and TM-to-y
eigenmodes is derived. The corresponding derivation for TE and TM-to-x and TE and
TM to-z modes is given in Appendix A.7.

Electric Field Matching

x-component
W, Ng!
iv’” ZB IB (x)VB () + 2 IB (x)VB ()
n unB p
N NIE k' u NM
L 0 (2.1)
=D Vil 2 Iumqw+2uumnw
. J “jA

Both sides of Equation 2.1 were multiplied by
N
Zwm%m

Integrating over the aperture in the x and y directions and applying orthonormality of the
y-modes yields

AV B, =BV A,
where

i
K Wi y \np \mp
=8 [ I (D), (x) dx
B upB Xy
Amn = 2 NTM x,
P
+Zj@@h(ﬂwﬁ%M%@My
9 x 3]
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_NKE " oo Yu 7
Z4 Ho ng mp q P *
| T [ 14 0I5, @) dx | Vg )V, () dy
B = i 9 Tugy x )
mn —
NTM X,
P
w3 [ Iy @i devB )V, () dy
L " ox Y i
y-component
B ™ A ™ 'q
N, Ng -vmn B (Y) N P Ny qu ( )
ZVB Z B, (N —= ZV 2

(y) 2.2)

Both sides of Equation 2.2 were multiplied by

™ *

NB k£ (080 nrs

> v ) I, )
s usB

Integrating over the aperture in the x and y directions and applying orthonormality of the
y-modes yields

HVBZ = JVAZ
where

NB szn
Hyp= Y, 250 j Vg, (Vg (x)' dx
r Upp X

NE!NE ™ e Y Iy DIp, )
I 33 O g dxj"—(;—dy
P4 Upg M

In addition, multiplying both sides of Equation 2.2 by
NEE
2%@@@
and integrating over the aperture yields

PV, =QV,
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where
Yl B (y) B (y)
}: Z IVB (V3. @) dxj
9 x
NTE NTM x
¢ A ()’) B ()’)
2 > Vit vy (x)dxj y
q xl
Magnetic Field Matching
x-component
NA NTE NMk
> 1 ZVA (DL, 0)- Y, =4 Dy "Wy )
m p ”PA
NS | NE NTMk " wEg (2.3)
=35 Z Vs, WIg 0)= Y, LV, (x)IB )

i k kukB

Both sides of Equation 2.3 were multiplied by

nS %
2 0 B0
A e )

Integrating over the aperture in the x and y directions and applying orthonormality of the
y-modes yields

KV, =LV,
Z 2

where

NTM N;{E q np *®
¢ Iy (D14 (¥)
Kpn= Y J'VA (X)VA ” %) dxj%
€4(y)
p 9 x;

kn (080 wnp
—%— J Vi, Vi, (x)"dx]

Ups
NM NIE Yu Iy (y)IA ©)
):[Zjv DV (' de [ 22—
P4 x ea(y)
NB k” wE Yy IB (}’)IA )
j @V, ()" dx fg—()—dy]
. urA X ALy
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y-component

N4 NEE NB  NEE

ZIA ZIA (x)vA )= Zﬂ’ ZIB (x)IB )
24)

Both sides of Equation 2.4 were multiplied by

N};Ek *

Oy s % 18 *
Y A Iy ) Va, )
s usA

Integrating over the aperture in the x and y directions and applying orthonormality of the
y-modes yields

CVBZ = DVAZ

where

NZ{E km *wu Xy
O tnp rmp
Com =Y, ——Zz o | L, (I, ()" dx
14

upA X
NIENGE kz”’
=3y 0 [ Ig, Iy, (x) dfoB (V4,0 dy
p q uPA xl Y

In addition, multiplying both sides of Equation 2.4 by

N
Zammm

and integrating over the aperture yields

MV, =NV,
where
NTMNTEx
M= 3 3 [ia Ol " as j Va, GV, () dx
14 q Xq ¥
NTM NTE
=3 i wry e j Ve, (0)Va, ()" dy
P q Xy v

Complex Power Conservation

Several relations now exist between the z-mode voltages and currents at section interfaces.
Ultimately, a single coupling expression for the voltages and a single coupling expression
for the currents is required. To determine the means by which the previously derived
coupling expressions can be combined, a conservation of complex power technique is used.
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Conservation of the complex power flowing in the z-direction normal to the section
interface is enforced regardless of the number of z-modes used.

The total power carried by the structure is summed over all z-modes as follows

NA N Xy Va

Py = EZVA I} Jjet (x,y)xhy, (x,y) eu, dydx
mon Xy
NENB « XuYu

Ptot ZZVB IB J'J'e,B(x,y)xh,B(x,y) eu, dydx
mon X131

Using the field relations in Section 2.3.2.9, the power flow through any given section is

NA NA NTE TM
P;m:ZZVAIA [Z Z[J’I (x)I (x)dfo ()’)V ()’) dy
m n X Y

Yol (y)Iy »

—jV v x| 2 dy]
X b/l &r(y)
NTE

3k wuojl @I () dx
p kup X
NTMk *weo *

+ 3 —L——jv ()V (x)dx]

p kup X

Therefore Ptzot for section A and section B can be expressed in terms of the previously

derived coupling matrices. In addition, the coupling between the modal fields in sections
A and B is required to be such that the power coupled from z-modes in section A to z-modes
in section B is the same as the power coupled from z-modes in section B to z-modes in
section A,

Pl [I ] CT+MT—KT][VAZ]

=[IBZ] [DT+NT—LT][VAZ]
Py [IB ] [A+H- P[VB ]

LS AN
So for conservation of complex power, it is required that

D'+N'-L'=B+J-Q
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This relation can be readily verified by inspection of the individual terms in each matrix
listed previously. To obtain a single coupling expression for the z-mode current, and a
single coupling expression for the z-mode voltage, write

[, J=(en)[1a, } [V, |=TCv][Va
Therefore, for power conservation
[cr][c” +MT -K']=[A+H-P][Cy]

To ensure complex power conservation regardless of the number of z-modes used in each
section, the following expressions for the current and voltage coupling will be used

[Cy]=[C+M-K] [D+N-L]
[Cy]=[A+H-P]'[B+J-Q]
=[A+H-P] D"+ N - L]

The corresponding derivations for TE and TM-to-x and TE and TM-to-z modes are presented
in Appendix VII. Appendix VIII contains a summary of the coupling expressions for each of
the three mode options.

For sections, with uniform dielectric constants the self-coupling matrices [A + H - P] and
[C + M - K] are diagonal. Therefore, calculating these matrices and their inverses requires
only a small computational effort for this case.

2.3.3.2 Section Discontinuity Scattering Matrix

Once the z-mode voltage and current coupling matrices are determined for each
two-dimensional section discontinuity, the scattering matrix of the discontinuities can be
determined. The coupling expressions for the z-mode voltages and currents were used in the
form used previously in Section 2.3.2.4

I, 0 | Pr |fVy

z

. Py | 0 || Ig, |
for "step-up" transitions (section A cross section enclosed by section B cross section), and
] [ l

Va 0 | Bv |14,

z

_IBZ_ - PI | 0 _4_VBZ_4

for "step-down" transitions (section B cross section enclosed by section A cross section). Py,
and Py are the current and voltage couplings, respectively. These coupling expressions are
listed in Appendix VIII for the various choices of eigenmodes.

As for the two-dimensional case discussed in Section 2.3.2.4, note that the currents in the
smaller section could be expressed in terms of the currents in the larger section, but not vice
versa. This is because there was no boundary condition for the magnetic field on the wall of
the aperture. Similarly, the voltage in the larger region could be determined from the
voltage in the smaller region and the boundary constraint that the component of the
electric field tangential to the section interface must disappear on the aperture wall.
However, as for the two-dimensional case, this boundary constraint means that a coupling
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expression relating the voltage in the smaller region to an arbitrary voltage in the larger
region cannot be defined, since an arbitrary electric field cannot be specified in the larger

region.

A scattering matrix relating the amplitudes of the incident and reflected waves on each
side of the discontinuity is required and this can be derived from the voltage and current
coupling relationships. This scattering matrix is written as

b S11 | S12 c
n| |, 1
¢ Sy1 | S22 LD
. (n) I
coupling (P71
| — %
-
d— —VCE
e

v --— 4——b1111
—q
| -

section interface
Figure 2.11 Single input section coupled to N output sections

Step-down transitions

Figure 2.11 schematically shows a single input section coupled to N output sections through
a step-down discontinuity. The voltage and current coupling between the input section and
the nth output section are written as P(\?) and Pgn), respectively. Representing the incident
and reflected wave amplitudes as shown in Figure 2.11, the following relations can be

defined
N
o +b! =Y PPl +b] ]
n

el — byl =P -’
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Therefore

This leads to

and

In matrix form

where

N N
bl =Y PR L PP b+ |+ SR b -
n n

-1

N N

bl = —[U + ZP(‘}’)P?)} [U - ZPV)P(,P)]C’
p p

-1
N N
+2!U+ ZP(VP)P(IP)] N
D n

-1
N N
=P U+ [U +Y p@f])p;z’)] {U - ZP(VP)PE,P)] !

4 p

-1
N N .
(PpP | p@ pll
+y U5M—2P§")[U+ZPVP PI"] P |b;
q p

e — — | — p— —
b (Sl | [ Sz 1 |[
|| TR o

= ! bo

e |

I I
- CN- — —ILbN-

- 1-1
N N
Si1=— U+ Y PPPP [U-ZP‘VP)P?)]
L p J p
- N .._1
S12, =2| U+ PPPP | PP
p =

Sa1,, = P{™[U-Sy;]
822,n =[Ubpmn — P{™S), ]
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Step-up transitions

Figure 2.12 schematically shows N input sections coupled to a single output section through
a step-up discontinuity. The voltage and current coupling between the nth input section and

the output section are written as P(\r;) and P%n) , respectively. Representing the incident and
reflected wave amplitudes as shown in Figure 2.12, the following relations can be defined

N
b1l =3 Bcd +51]
n

ol -] =Bt -]

Therefore

N N
o =Y P[P+ BB 4 cf |+ Y PPt b
n n

This leads to

-1
N N
=2 u+Y PP | Y P
p n

-1

N N
(P)p( (p) |, I
U+ PPPP | U-Y PPPP b

p p

I
I coupling [P(n)]
oN— |
I -
by /
I i
Cn——.' —C
CIO
bj, ~a— |

section interface

Figure 2.12 N input sections coupled to a single output section
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and
N -1
N
by =Y | U8, —ZPS”){U+2P(‘}’)PS”)] P |c!
q p

-1
N N
(Ol u+| U+ Y PP | U= Y PPPP) | !

p )4
In matrix form
p— I— panes - —
,0 [511 } | [512} CO
I I
by | = 1 N
[ S211 | S22 I
_C - ] — _.b -
where
St1, = [Ubmn-Py Sz1]
S12,, = Pﬁ‘“’ [U-S2]
- N -1
Sm = 2U+ ), P@pgw] o)
L P
- N -1 N
S; = -|us P(‘?)P§P)] [Uz P%’)PF’)}
L 3 3

2.3.3.3 Scattering Matrix Cascade

The modal scattering matrices for each two-dimensional section discontinuity (in the x-y
plane) can be cascaded in the z-direction with the simple 2-port scattering matrices of
each section to produce the overall scattering matrix for the entire waveguide element.
The general case of two cascaded multiport scattering matrices is shown in Figure 2.13.

The incident and reflected wave amplitudes (cI,bI), (CH,bII), and (CIH,bHI) are related by
Lgln {[S{ 1 [8{21} [c]
CHIRICAREA L

and

(b} {[Sf{] [Sflzl} "1
™| ¥ 1s%h1] ™
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Figure 2.13 Multiport scattering matrix cascade

The required cascaded scattering matrix is given by

[[b’l } _ [[sm [szl}[ ('] ]
[™1| (18511 85,1 p™1
The parameters at the cascaded ports are eliminated by first expressing [b”] as follows
[b"]=[sii]e"]+ Sfé][b’"]
-t st ]+ (st b +[st "]

and then by eliminating [c¢"] to obtain

[b"]= [[s J+[st)(u-[s]s%]) ][c

+[s](u-[si]sz])” [Sfé][b’”]
and finally by writing an expression for [¢"] as
[c™]=[S;,][c"1+[S;1b']
=[S, ][[S3,1c” 1+[S;,1b" 1] +[S3,]b']

= (S5 U-+ S5 )(U-[SHTS5]) S 1S e

S EARCA CALEEATA NEA| i
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the required parameters can be identified as
-1
[Sf11= [[Sf’ﬂ +18(U-isfiush) isf] ][851]]
-1
(S21=18{ (U -18{118%,1) " 1sfh

-1
[S511=18% 1[U +i8h U-s{iush1) isfi 1}[s£1]

-1
8521= 551+ 55 s (- st s

Similar expressions for the case of two-port scattering matrix cascading are presented
in [37]. The treatment shown above is superior to that described in [37] in that multiport
scattering matrices can be handled, and only a single inverse needs to be evaluated.

The z-mode scattering matrices for uniform sections are diagonal, with elements
Si1" =51 =0
813" = S31" = Dypn = Sy xp(=jk7 L)

where I is the length of the section and 8mp, is the Kronecker delta. Note that this is the
only point where the section lengths appear, since all other quantities relating to
propagation constants and mode coupling are related to the two-dimensional cross sections
of the various sections in the element. This means that only the final scattering matrix
cascade needs to be recalculated if section lengths are varied. This leads to considerable
savings in computational effort where optimisation of a structure is required with respect
to the lengths of individual sections.

To perform the section cascade, the two-port scattering matrices for the uniform sections
are first cascaded with the scattering matrix SP of the discontinuity immediately
preceding each section. This yields a multiport scattering matrix S which includes the
discontinuity and the uniform section following it which is given by

[S{11=IS1]
(sf51=[sP D]
(sH1=DIsH]
[s%1=[DISH D]

As described in [37], strongly evanescent modes for which 1k;Is! < 15, where I is the
length of the section, are not considered in the cascade. While such modes play an
important role in evaluating the z-mode scattering at individual discontinuities, their
fields are extremely weak away from discontinuities. Therefore, once they have been
accounted for in the coupling evaluation, their subsequent effect on the overall scattering
matrix cascade is negligible.

The section cascade begins at the specified input end of the element, with successive
sections represented by SIl cascaded to the end of the previous section. The total cascade up
to the section to be added is represented by SI. The general multiport cascade is thus
applied repetitively to construct the entire element. The input and output ports for the
element are assumed to be terminated with matched impedances. These scattering
parameters constitute the output of the three-dimensional analysis.
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3 RESULTS

3.1 Two-dimensional Structures

Various two-dimensional waveguiding structures for which theoretical or experimental data are
known were analysed using the transverse resonance technique described in Section 2. By
comparing the results of the analysis with existing results, both the transverse resonance theory
and its implementation in the program TERESA (for TransversE RESonance Analysis) could be
tested. In each structure, TE and TM-to-y eigenmodes were generally used, although TE and
TM-to-z modes are more appropriate for structures with a uniform dielectric constant. Although
affecting the required amount of computational effort, the particular choice of TE and
TM-to-x, y, or z eigenmodes was found to have no effect on the results.

3.1.1 Double Ridged Waveguide

Montgomery [9] calculated the cutoff frequencies of TE modes in the double ridged
waveguide shown in Figure 3.1. A comparison was made these results and results obtained
from the transverse resonance analysis. This data is shown in Table 3.1. In the side
regions, 9 TE and 8 TM-to-z modes were used, while 3 TE and 2 TM-to-z modes were used in
the gap. The number of modes in the side regions was determined from relative
convergence given the number of modes in the gap. The number of gap modes was chosen
according to convergence of the final results. Note that one more TE-to-z mode was used
than TM-to-z modes. This is because the lowest order TE-to-z mode is the TEM-to-u mode
for which ky;, = 0. This mode has no TM-to-z counterpart, so that one extra TE-to-z mode
must be used to attain the same k; value as the highest order TM-to-z mode. This
situation also arises when TE and TM-to-x modes are used. If TE and TM-to-y modes are
used, one more TM mode than the number of TE modes is used to account for the
TEM-to-u mode. This difference arises the different definitions of the various mode types.

—>» 254 [€&—
3.683
=
o
—
3.683
<508 > < 508

Figure 3.1 Double ridged waveguide cross section [9] (dimensions in mm)

The transverse wavenumbers kT for various modes are shown in Table 3.1. The modes
labelled as "trough” modes are so named because the fields in the gap are only weakly
coupled to the fields in the side regions. The agreement in Table 3.1 is generally better
than 0.2 %. The simplicity of the ridged waveguide cross section belies its importance in
many applications including broadband transitions and filters.
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3.1.2

Table3.1 Comparison of ridged waveguide TE mode cutoff frequencies

Mode 19 (GHz) £R (GHz)
TE19 6.857 6.871
TE19 (trough) 15.104 15.104
TEp 24.858 24.890
TEjyg (trough) 29.536 29.541
TE3 32.024 32.026
TE1j (trough) 33.271 33.271

Unilateral Finline

Finlines are an important structure extensively used in broadband millimetre-wave
applications due to their compactness and the ease of mounting active devices. The
theoretical results of Vahldieck [21] for the unilateral finline shown in Figure 3.2 were
used to verify the transverse resonance results for this guide. This structure was more
complex than the ridged waveguide in that it contained both "step-up” and "step-down"
discontinuities on either side of the slot region, as well as a dielectric. Symmetry about
the axis shown in Figure 3.2 was invoked to reduce the computational effort required. For
convergence, 2 TE and 3 TM-to-y modes were used in the slot region, with 13 TE and
14 TM-to-y modes in the dielectric region and 8 TE and 9 TM-to-y modes in the side regions.

I
0.825

Fin thickness 5 um

Figure 3.2 Unilateral finline cross section [21] (all dimensions in mm)

A comparison of the normalised wavenumbers k;/kg is shown in Figure 3.3. Note that the
agreement is generally better than 3 %. The discrepancies between the two sets of results,
particularly for higher order z-modes, may be due to numerical inaccuracy or convergence
difficulties in Vahldieck's method as discussed by Mansour and MacPhie [27]. Graph
reading errors in obtaining Vahldieck's results could also contribute to the observed

discrepancy.
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2.0
1.5
k,
T 104
ko
x TERESA i
0.5 — theory [21]
4
O-O T T T T T T T T T T T T T
50 100 150 200
frequency (GHz)

k
Figure 3.3 Comparison of k—: versus frequency results for unilateral finline

3.1.3 Suspended stripline

The suspended stripline from [27] and [51] shown in Figure 3.4 was analysed using the
transverse resonance technique. Symmetry about the axis shown was used to reduce the
required computational effort. For convergence, 3 TE and 4 TM-to-y modes were used in the
narrow region under the strip, with 4 TE and 5 TM-to-y modes in the other regions.

< 3.556 >

I
7.112
=
o
'

i

=

Figure 34 Suspended stripline cross section [27]
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The results were compared with theoretical results published by Mansour and MacPhie
[27], and Bornemann [51] as shown in Figure 3.5. The agreement with [27] is excellent,
whereas some discrepancies are again noticed with Bornemann's results, particularly for
the higher-order modes. As with the unilateral finline, numerical inaccuracy and
convergence difficulties inherent in Bornemann's method are the most probable causes of
error.

Coplanar Waveguide

The coplanar waveguide is another structure commonly used for millimetre-wave
applications. The coplanar waveguide shown in Figure 3.6 was analysed and the results
compared with those of Mansour and MacPhie [27], and Bornemann and Arndt [13]. The
calculation of the dominant and first-order odd mode normalised propagation constants
k,/ko was performed with the depth, d, of the groove set to 0 and 0.5 mm. Symmetry was
used to reduce the size of the calculation, with an electric wall inserted on the axis shown
to generate the desired odd symmetry. For convergence, 2 TE and 3 TM-to-y modes were
used in the slots, with 8 TE and 9 TM-to-y modes in the side regions. Ford =0, 8 TE and
9 TM-to-y modes were used in the dielectric regions, and 13 TE and 14 TM-to-y modes for
the d = 0.5 case, as required by the relative convergence criterion.

3.0
2.0 1
k, )
ko
.
104 ¢ theory[27]
+ theory [51]
{ — TERESA
0.0 T T i T T T
5 10 15 20 25 30 35 40
frequency (GHz)
. . kg -
Figure 3.5 Comparison ofk—0 versus frequency results for suspended stripline

For both groove depths, the agreement with [27] and [13] is close, as shown in Figure 3.7,
although the agreement is closer for the d = 0 case. Note that increasing the groove depth
decreased the first-order odd mode cutoff frequency, reducing the single-mode bandwidth
of the guide [27].

Groove Nonradiative Dielectric Guide

Nonradiative dielectric waveguide is attractive for millimetre-wave applications
because of its simplicity, ease of fabrication, and low loss. Tong and Blundell [52] included
grooves in the upper and lower plates to fix the dielectric slab in place, as shown in
Figure 3.8. The inclusion of a groove, however, renders simple single-mode transverse
resonance modelling inaccurate because of mode scattering at the groove discontinuities, so
that a generalised, multimode treatment is required.
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1.55

Fin thickness 5 pm

> e

Figure 3.6 Coplanar waveguide cross-section (all dimensions in mm)
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— theory [27] A A
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20 40 60 80 100

frequency (GHz)

k
Figure 3.7 Comparison of k_: versus frequency results for coplanar waveguide

|:‘ 12 >|£2

9.6

Figure 3.8 Groove nonradiative dielectric (GNRD) waveguide cross section
(all dimensions in mm)
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Transverse resonance analysis of the groove nonradiative dielectric (GNRD) guide shown
in Figure 3.8 yielded values for the normalised wavenumber kz/kg of the LSMj1 mode
which could be compared with experimental data published by Tong and Blundell. GNRD
guides with relative dielectric constants, €, of 2.56 and 4.0 were analysed. TE and TM-to-x
modes were used in the calculation, with 5 TE and 4 TM modes used in each region to ensure
convergence. The agreement with the experimental data shown in Figure 3.11 is generally
better than 5 %. This disagreement is also evident in Tong and Blundell's calculations, and
so probably originates from experimental errors.

2.0
LA
‘2 0.0
kO ’ /
Ae =400 :
AE : 256 experiment [52]
— TERESA
'2.0 T T T T
7 8 9 10 11 12
frequency (GHz)

k
Figure 3.9 Comparison of i(_(z, versus frequency results for GNRD waveguide

3.1.6 Shielded Dielectric Image Guide

A comparison was made between the theoretical results presented by Strube and Arndt [40]
and the results from the transverse resonance analysis for the shielded dielectric image
guide shown in Figure 3.10. This guide differs from those discussed previously in that it
possesses a non-uniform region. For this reason, TE and TM-to-y modes must be used. For
convergence, 5 TE and 6 TM-modes were required.

A

7.9

< 15.798 >

Figure 3.10 Shielded dielectric image guide cross section
(all dimensions in mm)
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Unlike the structures previously examined, this guide was found to support a complex mode
between 13.8 and 16.3 GHz, as can be seen from Figure 3.11. Complex modes occur as a result
of coupling between degenerate z-modes. Although only one mode is shown in Figure 3.11,
they must exist in degenerate pairs with propagation constants of opposite sign
(+k; =+ B +ja). While a real power flow exists, the total power transmitted through
the cross-section is zero, since equal amounts of power are transmitted in the forward and
backward directions. Hence, complex modes do not correspond to power dissipation, and
are supported in the lossless waveguide model. The agreement between the two sets of
results shown in Figure 3.11 is excellent.

real

imag.
________ theory [40]
X TERESA
-2 T 1 T T T
12 14 16 18
frequency (GHz)

Figure 3.11 Comparison ofﬁ versus frequency for shielded dielectric image guide

ko

3.2 Three-dimensional Structures

The calculation of the propagation constants, k;, and the modal fields for the z-modes in
two-dimensional sections allowed the scattering parameters for three-dimensional waveguide
elements to be calculated. As for Section 3.1, structures for which independent theoretical or
experimental results could be found were analysed.

3.21 Rectangular Waveguide Transformer

The simplest type of element to analyse comprises cascaded rectangular waveguide
elements. A typical example of such a structure is the Ku to X-band transformer shown in
Figure 3.12, with dimensions as shown. This structure was analysed by Arndt et al. [39].
For analysis by the TERESA program, 6 TE and 5 TM-to-z y-modes with 60 z-modes were
used in each section. A comparison of the reflection coefficient 15111 given in [39] and by
the TERESA program is shown in Figure 3.13. The small error between the two sets of
results can be attributed to reading error in obtaining the results from [39] graphically.
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2285 x 10.16 (X-band)

21.72 x9.67
20.67 x9.65
17.73 x9.33

1644 x 8.66

7158 X 79 (Ku-band)

Figure 3.12 Four-section Ku to X-band waveguide transformer (all dimensions in mm)

1.0 ”r

0.8

0.6 theory [39]

1S, | ¢ TERESA

0.4 -

0.2 -
1

0.0 T . Attt
9 10 1 12 13

frequency (GHz)

Figure 3.13 Comparison of input reflection coefficient for Ku to X-band transformer

3.2.2 Rectangular Waveguide E-Plane Stubs

A comparison of the magnitudes of S11 and S12 and the phase of S11 with known results
was made for the rectangular waveguide with E-plane steps shown in Figure 3.14. This
structure was independently analysed by Rozzi and Mongiardo [53]. The results from [53]
are compared with the TERESA output in Figure 3.15. The two sets of results agree closely,
except at 14.75 GHz where TERESA appears to predict a resonance. Note however that
the Rozzi and Mongiardo technique also shows some anomalous behaviour near this
frequency. For the TERESA analysis, 4 TE and 3 TM-to-z modes and 35 z-modes were used
in the smaller sections, with 6 TE and 5 TM-to-z modes and 55 z-modes used in the larger
sections. Symmetry was used to reduce the size of the calculation.
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3.2.3 E-Plane Insert Filter

The E-plane metal insert filter shown in Figure 3.16 was analysed, and the results
compared to calculations by Vahldieck et al. [44], and measurements by Tajima and
Sawayama [54]. This comparison is shown in Figure 3.17. The results from the TERESA
analysis agree well with those from [44]. A small discrepancy is apparent with the
measured results of [54] which can be attributed to graph reading error. For the TERESA
analysis, 6 TE and 5 TM-to-z modes and 55 z-modes were used in each section. Symmetry
about the y-z plane was invoked to reduce computational effort.

9.52

I( 46

Figure 3.14 WR 75 waveguide with E-plane stubs

(all dimensions in mm)
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Figure 3.15 Scattering parameter plots for E-plane stubs in rectangular waveguide

| < 12.273 > |

| < 12.273 > I

—>||l<—0s5

9.525

—>|: 2976

!

Figure 3.16 Rectangular waveguide E-plane metal insert filter (all dimensions in mm)

2076 | N3

19.05

>

58




DSTO-RR-0027

17.997

60

50 1
40
30
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Figure 3.17 Transmission coefficient for E-plane metal insert filter

Square Waveguide Iris Polariser

m Mmeasurement [54]
— theory [44]
+ TERESA

T
13 14

frequency (GHz)

Figure 3.18 Square waveguide iris polariser
(all dimensions in mm)

15

The square waveguide iris polariser shown in Figure 3.18 was analysed and a comparison
made with independent calculated results from [55]. These components are used to excite
circularly polarised waves in square aperture antennas by producing a 90 degree
differential phase shift between the orthogonal TE1g and TEp; modes.

For the TERESA analysis, 20 TE and 21 TM-to-y modes and 60 z-modes were used in each
section. Horizontal and vertical symmetry were used to reduce the size of the calculation.
For the TE1p mode, a horizontal magnetic wall and a vertical electric wall were used, and
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a horizontal electric wall and a vertical magnetic wall for the TEg; mode. Figure 3.19
shows the good agreement between the TERESA results and the analysis presented in [55].

140
*
130 1
theory [55]
phase 120 A + TERESA
©)
110 A +
+
100 -
90 A h
80 T T T T
10 12 14 16 18 20
frequency (GHz)
14
1.3 1 theory [55]
VSWR x TERESA
TE
(TEov) 4 |
1.1 A
1.0 T T T N -
10 12 14 16 18 20
frequency (GHz)
1.10
VSWR 1 theory [55] i
+ TERESA

(TE10) 1.05 ’

1.00
10

14

16

20

frequency (GHz)

Figure 3.19 VSWR and differential phase shift for square waveguide iris polariser
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3.2.5 Ridge Waveguide Notch

The notched ridge waveguide shown in Figure 3.20 was analysed with the results
compared to experimental data obtained by the present authors. A resonance was observed
at 6.55 GHz. The close agreement between theory and experiment is shown in Figure 3.21.
For the TERESA analysis, 60 z-modes were used in each section to ensure convergence.

20.19

11.55

16.29

—>

Figure 3.20 Notch in ridge waveguide (all dimensions in mm)

0 """"‘""'""*“"""F-r-}--q.q_
E
220 4
87
-40 - :
+,
-60 T T T
35 45 5.5 6.5 7.5
frequency (GHz)

Figure 3.21 Transmission coefficient for notched ridge waveguide
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3.2.6 Cross-Iris Filter

The transmission coefficient |S71! was calculated the cross-iris filter shown in Figure 3.22
using the TERESA analysis. In the rectangular section, 8 TE and 9 TM-to-y modes with
60 z-modes were used. For the irises, 3 TE and 4 TM-to-y modes were used in the smaller
side regions, and 5 TE and 6 TM-to-y modes in the larger centre region, with a total of
30 z-modes required for convergence. Symmetry about the vertical and horizontal planes
was used to reduce the size of the calculation. The results obtained compared well with
the calculated and measured results determined by Ihmels and Arndt [50}, as shown in
Figure 3.23. .

7.899

12.155

Iris thickness 0.21 mm

/
< 15.799 >|

Figure 3.22 Cross iris resonator filter (all dimensions in mm)

4 CONCLUSIONS

A three-dimensional mode matching analysis which uses the generalised transverse resonance
technique to analyse the constituent two-dimensional cross-sections in passive waveguide structures
has been developed and successfully tested. Comparison with a broad range of waveguide components
for which independent experimental or theoretical data could be found revealed close agreement in all
cases.

This method potentially offers advantages in speed and efficiency over more generally applicable, but
computationally intensive, methods such as the finite element or finite difference methods. It
promises to be especially useful for the analysis and optimisation of broadband waveguide components.

Further work will concentrate on the analysis of more complex three-dimensional waveguide
components for the design of filters and broadband transitions.
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Figure 3.23 Transmission coefficient for cross iris resonator filter
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APPENDIXI MODE FUNCTION GENERATOR

The field in each subregion of a given two-dimensional section within the element to be analysed is
represented by an expansion in terms of y-modes which are TE and TM to the x, y, or z reference
directions. The choice of which direction was most appropriate for a particular type of structure is
discussed in Section 2.3.2. The general technique used to generate the fields corresponding to these
mode functions follows Felsen and Marcuvitz [10], and is derived in this appendix from Maxwell's

equations. These equations are

V xH
VxE
VecE
VeuH
From Equation I.1
VxVxH
(VxVxH)xu,
Using the identity
V(AeB)
then (with A = Eand B = uy)
[V X (jweE)] X uy

joeE ) (I1.1)
-jopH (1.2)
0 (1.3)
0 (1.4)
V x (jweE)

[V x (jueE)] x ug
(AeV) B + (BeV) A + A x (VxB) + Bx (VxA)

joe [Ex (VX uz) + (EsV) uz + (uzeV) E - V(Eeuy)]

. d oE
joe [O+0+5%—+E?Z-Vth-VzEz]

. 0E
joe I3 - Ve E;] (1.5)

where V¢ is the transverse gradient operator, and Eq is the field in the plane transverse to the reference
direction to which the modes are to be TE or TM. Note that since the modes are to be recalculated for
each subregion layer of differing dielectric constant, € is regarded as uniform. From Equations 1.1 and

1.2
VxVxH = k?H (1.6)
where k2= 0?ue
From Equations L5 and 1.6
aa—lz‘ = -j;—esz, xu, +V,E, (L7)
Now from Equation I.1
Vix Hi = joweE,
Thus
Vix Hieu, = VieHiX u, = jweE,
ViVieHix u; = jweViE, (1.8)
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From Equations 1.3 and 1.4
JE 1
Et = j—ZD—S[kZHtxuz+VtVt.Htx uz]
) ViV
= o [u + th—t} e Hi X uy 1.9)
where 1; is the transverse unit dyadic uyuy + uyuy.
Similarly,
v
Let
Ery2) = 2,Vi@e(xy)
i
Hixy,2) = 3 L(@k(x)Y)
i
Substituting in Equations 1.9 and 1.10
aV; . v,V
D —é-z-’—e,-(x,y) = —]a),u[l, + 122 ! } oY L(Dh;(x,y)xu,
i i
ol; . v,v
)3 ShE - —Jwe[lt t2 : ] o uy X X Vi(2)e;(x,y)
i i
These equations will be satisfied if
—1——%6~(x y) = —ja)u|:1 + VtV‘]Oh-(x y)Xu
L@ & i\ ) i z
1 811 N VtVt
———h;(x,y) = ~]a)£|:1 + =L leu, Xe;(x,y)
‘II(Z) az ] t k2 z [

Now RHS is independent of z coordinate in both cases and thus we can write

1 oV,
I;(z) dz &%)
1 oL
— Zin(x,
Vi(Z) aZ l(x y)
ie.
v
0z
%
0z

= —jK;Z;e;j(x,y)

= —jK;Yih;(x,y)

= —jK;Z1;(2)

-JjKk;Y;Vi(z)
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APPENDIX II MODE FUNCTION DERIVATIONS

Using the mode function generator taken from Felsen and Marcuvitz [10] and derived in Appendix I, the
actual y-mode fields can be calculated. These modes are defined as TE or TM to a reference direction x,
y, or z, depending on the nature of the section being analysed. TE and TM-to-y mode fields are derived
in Section 2.3.2.1, and this appendix contains exactly the same derivation for TE and TM-to-x and TE
and TM-to-z modes. For x and z reference directions, note that the single prime denotes TM modes, and
the double prime denoted TE modes. This is opposite to the convention adopted for the y reference
direction in Section 2.3.2.1. The reason for this was to maintain as many similarities as possible
between the derivations in this appendix and the derivation in Section 2.3.2.1. The different
convention is also convenient in that it reflects the manner in which the TERESA source code was
written to implement the layer mode function calculation for each subregion in a given two-dimensional
section. Note that the y-mode normalisations given in Section 2.3.1 are assumed.

TE-to-x (ex=0)

er(n2) =ey(y)e’ kzzuy +e,(y)e k7,

h1(.2) = hy(Me *zhuy + b (y)e 2,

kY h1(,2) = a)e[l, + V,:ZT } uy X e7(y,2)

Thus (after cancelling e7jkz2 factor)

" " 1" 1 az 2 " ae" 2 2 " ae"
kY (hu,+hu,)=——oI/—+ki€, leu, + jk, —>u, —(kj&, —k*)eu, — jk, —%u
xx(hyy zz) wﬂo(ayz OrJzy Jzayy(kOr Z)}’ijayz
So

”" " 1 2 2 " . ae;
k.Y =————oI|tkjE, — k3 e, + jk, —=
xxhy w#O(Or y)z Jzay
Now, since V.e" =0, ande;=0
ae" "
y_ .
'é’;_szez
Therefore
2
”" " k "
k.Y h,=——2—¢
xtxy oty b4
If Y;ischosen to be
Y, = ks
oo

then
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Similarly
" " 1 2 2 " . ae"
k.Y.h = ——(ks—k)e + jk, 2z
x 1 xlz w‘uO[Or zy]zay
FromV.er=0
2 - w9
kye, = Jjk; %
So
2
" " k "
k.Y.h, = —X¢
xLxlz ol y
Hence
h, = ey
As for TM-to-y modes, set
h'l _ e" _ Ill (y)e_jkzz
Z y
Using
dr e . ;
— = —jk,Y V(y) = —joggV (y)
dy
leads to

Be;

" " J
e, =— = ——
e="hy k, oy
= ____0])680 V (e

Z
TM-to-x (hy=0)

er(»)= 'y(y)e_jkz"'uy + e'z(y)e—jkzzuz
h(n,2) = hy(Me ¥ z2uy + b (e 2,
' 1 1
k.Z.ep(y2)= w[ul, +—V; ———VtJ ehp(y,z)Xuy
o° " E(y)

Thus,(after cancelling e k2% factor)

ror 1 2 2\, ah‘y
s [(koso—ky i, + ke
Now, sinceV.h' =0 and h:r=0
ok, .
ahy - ijhZ
y
So
2
. k .
k.Z e, = X _h
Y wepe, ©
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If Z;, is chosen to be

' k
Z, = X
WEYE,
then
ey, = h,
Similarly
v 1 2 2 . oh,
k,Z.e, = (8—k)+]k—i
x&xCz wgogr[kOO zhy Zay
From V.h'=0
2, .. oh
—ksh, = jk,—%
_ vy J%z dy
So
2
1 1 kx 1
kxzxez -(DEOE[-
Hence
e‘Z = -h'y
As for TE-to-y modes, set
e, = -hy = V(y)efks
Using
aV e 1
3y JkyY I(y) = -jouoI(y)
leads to
' i oh,
- a = LY k2
h = = - )
2 ey k; 3y eJky
= 201 (y) efkez
Z
TE-to-z (ez=0)
eT(y,z) = e;(y) eTkzZ u,
ht(y, z) = h;(y) ekzz uy + h;(y) eTkzZ uy

ka;hT(J/: z)

Thus (after cancelling e-7kzZ factor)
kax(hylly + hzuz)

If Y; is chosen to be

where

then

vrVv
m€|:1t + T ]- uyx ey, 2)

1 (2 2\," . 9y
—| ko€, —k )e u, — jk,—=u
g Yy ay y
; k>
x = kyopo
K+l = kper-K
h'z' = e;
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Let
h, =e¢ = I(yelks
then
" ik, d
h, = Lz yI(y)e'szz
k coe d :
= ——Z-E—QV (y)eikzz
T
because

TM-to-z (hz=0)

d " . "
@I (y) = -jweo V (y).

ht(y, z) = h'y(y) ejkzz uy

eT (y,2) = e'y(y) efkz uy + ey(y) efkzZ u,

KZy ey, 2) = m[ulwgme—(ly—)w} hy(y, 2)x ux

Thus (after cancelling e7¥zZ factor)

k, Y (e +eZ

If Z; is chosen to be

then

If

then

1 ) o,
) = ———||kg&, —k; Jhyu ik, —=
Z Wiy ( 0 Z) — JK; a
. k>
Zx = kx(!)eoel-
e'z = -h'y
' j_.*i
e =
e, = hy = V' (y)edkez
e, = Jlf; V' (y)edkzz
y K7 4y
- kZmIJ'OI( )e_lkzz
T

Wy
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APPENDIXIII REGION EIGENMODE COUPLING

In this appendix, the coupling between x-modes in adjacent subregions is calculated for TE and TM-to-x
and z modes. The derivation is essentially similar to the TE and TM-to-y mode coupling derivation in
Section 2.3.2.2, and proceeds using the same approach. The x-mode coupling is evaluated by considering
the continuity of their constituent y-mode fields which were derived in Appendix II for TE and TM-to-x
and TE and TM-to-z modes and Section 2.3.2.1 for TE and TM-to-y modes. Note that complete listings of
each of the coupling matrices is omitted. Appendix IV contains these expressions for the general cases
of section subregion coupling between all possible combinations of TE and TM-to-x, y, or z x-modes.

II1.1 TE, TM-TO-X COUPLING

III.11 Electric Field Matching

To evaluate the x-mode coupling at subregion interfaces, the components of the x-modes’
constituent y-mode electric fields tangential to the interface are matched across the interface.

y-component

Matching the y-component of the electric field at the interface between subregions A and B
yields the expression

NTE NTE TM
ZVB lio Z IB = ZVA IA N+ kﬂo ZVA IA ()
2 J

Using the orthogonahty condition for TE-to-x y-modes in subregion B
o135, (" dy =

and integrating over the subregion interface yields the coupling equation

TM NTE
nmn a)
Vs, +ou ZVB JIB )" I, () dy = ZVA fIB O)' I, () dy
S 4 Y Yl

“;’,‘,,0 ZV j I, Iy, ) dy
J Y

This equation can be expressed in terms of coupling matrices A, B, and G as

N mi
Vg + ZG,,po ZA,”VA + ZB,U
p

nm]

Note that A, B, and G developed for TE and TM-to-x modes are equivalent to matrices derived
for TE and TM-to-y mode coupling at subregion interfaces.
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z-component

The z-component of the electric field is matched across the interface between subregions A and B
in the same fashion as the y-component to yield additional coupling relations. This field
matching is expressed as

NTM E NTM )
2 Vg, Vs, —T—ZVB Vg, ()= ZVA Vi, <y>—%z A’VA’<y>

Z

Using the orthogonahty relationship for TM-to-x y-modes in subregion B
[3V8, )V, )y =6

and integrating over the subregion interface yields the coupling equation

TE NTM
wmn wg
iy S i [V 00 Vi o) dy= EVA Tvn Vi 0 b
p ] ]
NZE Y
WE wmj "¢ in wj
S LV, [VB,0Y VA, 00y
S b7,

where exactly the same approach is used as for Section 2.3.2.2. This equation can be written in
terms of coupling matrices F, C, and D as

™ TE
v mn wmp N4 vmi Ng nmj
Z an 2 CniVAx - z Dnj VAx
I J

III.1.2 Magnetic Field Matching

To obtain the remainder of the coupling expressions needed to evaluate x-mode coupling at
subregion interfaces, the x-modes’ constituent y-mode magnetic field components which are
tangential to the interface are matched across the interface.

y-component

Matching the y-component of the magnetic field at the interface between subregions A and B
yields the expression

TM NTM TE
mn 'n I'p weo
EIA A, (Y)‘— ZIA Va, )= ZIB VB Y)‘_—k ZIB VB »
z

Using TM-to-x y—mode orthogonahty inregion A
f VA (y)VA (y)dy =
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and integrating over the subregion interface yields the coupling equation

TE NTM
Iy, _% ij ) VA () dy= ZIB fVA ) VB (y) dy
2 v }’z
k’” 2 j Vi, 0"V )y

N
This equation can be expressed in terms of coupling matrices ®, C, and A as

NTE

Z d)mP an Z CmI 'I;m 2 A”J ;mj

z-component

Matching the z-component of the magnetic field at the interface between subregions A and B
yields the expression

E
ZIA Wy, 0)+EQ k 2 OISR 213 (y)IB »)

2 P
NIM

Using the TE-to-x y-mode orthogonality in subregion A

h_»i "o
jOIAy(y)IAy(y) dy=38;;

and integrating over the subregion interface yields the coupling equation

N'M NIE
rmn muo
Ig, + e }:IA f’ (y) IA (y)dy= ZIB fI (', ) dy
p yl l yl
TM
(’I’c‘:no ZIB jIA 'L, Wy
i W

This equation can be expressed in terms of the coupling matrices I, A, and B as

NTE

:;mn+ Z npA ZA IB + Zﬁﬂj
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II1.13 Complex Power Conservation

As for the TE and TM-to-y mode derivation in Section 2.3.2.3, the coupling expressions from the
field matching for the TE and TM-to-x modes are written in matrix form as

B [ . m B [ r..m
I | ‘F VBX C | "D VAx
| Wil - [ ofhl
L G | I L Bx L B | A _ —VAX
B | rm B | Al m
- + -
I, -0 Ia, ct | -A Ig,
| m - | Wm
| r | I | —IAX | B I A+ = —IBx
The power flow through the discontinuity for the mth z-mode is determined from the fields in
both region A and region B
A A
u * Ny Ny « *
m _ m m _ mn ymp n P
P = [EF xHF, dy=2 Y VI'L{P [ef, xhh dy
by nop b7/
Yu % N}’B NJI’; *y“ *
m _ m m _ mn ymp n p
PR = [Ef, xHF dy=Y 3 VE'Iy [ e%, xhf dy
b/l P N

*
For any given region, e'%B and th may be split into TE and TM components and the power
integral evaluated as follows
yu n |p* yu m n -p* lp*
f er Xxhy euydy= j (eyuy +e; )X (hy uy+h; u,)|euydy
] B/

Yu n , " n ' *
= [ e O ) €, Ay ()" dy

Yt
2 2 Yu Yu
O~ Uy n i " ' ‘P %
=—L0 [ IO, O dy+ [V, )y 00 dy
zZ% Y 3]
2.2 Yu
@ mop
= 2EC T 1T o1y ) dy+ 8,
kz'”kzm Y
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* *
feT th eu,dy= J‘Ii(e +ez uz)x(hy uz)}ouxdy
b/] B
Yu
= [ ey )b, )" dy- J e; hy (" dy
M N
yu " np * 602802 yu nn np *
= [ Lo O dy+—L [V )V, ) dy
Y A A i
2.2 Yu
W7E " up *
=8yt [V, )V, () dy
272
yu nn vp* yu nn nn vp* |p*
JeT xhy ouy dy=j (ey uy +e, uz)x(hy uy+h, ug)|euy dy
Y1 Y
o nn 'P * nh ‘P *
- j[ey Wk, " —e, MDA, ) ]dy
/]
=2 j Iy Iy 0 dy=<Z2 j v, oV, o) dy
Ky g b7/
=[1"T—45]pn inregionAand[GT—F]pn inregion B
Yu n wp* Yul n n wp* wp*
IeT xhy ouxdy=j (eyuy +e, u,)X(hy uy+h, uz)]Ouxdy
i b/
I LN
= [|ey G, )" —e; My ) |dy
i

Yu Yu
() tn np WE “n np
= k’,‘n" J L on o =22 vy 0wy 6)" dy
<y kz 71
= [F - (I)T] in region A and [G - FT] in region B
pn ph

Note that t denotes the conjugate transpose of the superscripted matrices. From the completeness
relationships shown below, the power crossing the discontinuity can be calculated for the modes

in both region A and region B.
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NEE 2 2 v, Yu
w /-‘l nq ' * ' p ng *
GTG] = 0 1 I d I ' I ' d.
[6'¢] =X o J 15,001 0 ay | 1 01y )"y
9 "z % Y v
2,2 Yu
O~H n x 1P
=—0 [ 1 01 Wy
e
zZ72 N
NEE 2 2 3 Y
() g ok 'p g *
[ np 2 m m*f 4,1y, O) YJ 4,0") 4,0 &
9 "z% ¥ ¥ :
2,2 Yu
oy n * 'P
= O* JIA ) 14 (y)dy
gmme D
FAR A ]
™
B w282 Yu 'q o . Yu wp q .
[F?F]np =Y — % [ Vg WV 0)'dy [ Vg )V )" Y
9 2% Y
2.2 Yu
0) 8 nn * np
= ”(l)* _fVBy(y) Vg, (0)dy
kz kz i
NIE 92 2 v, Yu
(> tq nn * np g *
o'o| = OV, 0V, Oy [V, (W, &)y
[ ]np )y o f Ay(y) Ay(y) yj Ay(y) Ay(y) y
9 %z % w Y
2.2 Yu
W~ E, nn % np
= = JVA () V4 ONdy
| 5id 2l Y Y
Z°Z N
So, for region A
- -1
I';n FI+I‘1T‘: rt.o V';n
P i *
Ax ) o ¥ + Wil
[ Ia, | LT-0" | I+0¥0 f| V,
- ,m"+_ l '1
I C pt I rt rir | rto
By | | |
- Inm + 1 | 4 :
[ Ig | Lot A JL-ot | 1 r-ot | +ote
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From the relationship

[ [I+or]1 : [[+®T'T 1o

-1t

I

| TI+@TT | [1+T@]1

it follows that [[+T'®] 1T = T[I+®I']! and [[+®T]1d = o[+ o] L. Using these new relations

-1 -1
| l
+rtr : rto 1 | @ 1t
| | B
r-ot | I+oto r I -pt I
Hence the power in subregion A is given by
IR
m ooy | Jm
Ig, cC | B I =@ || Vy,
P‘;\‘x S R ) [ | - ———
o K [ A r [ I e
LBy LT [ | Ax
— ot
m te |t Jm
Ig, C+B'G | pt-Co Va,
- "m "IIl
| Ig, | L AT-AT | A+ate ||V,
Similarly, for region B
—'m—hl ctc ! gtr [V
Ig, | | #G'G GFF | Vg,
Pg. = |- || -
X
i || crt ! rerte || VE
LBy L& | L VB,
—t- - -1
~ m P | ! ,m
Iy, KG'G | GU-F I | -F c , D Va,
| | [ [ W
Ft +
| Ig, | LGF' \I+F'FJ| G | I B | A Ay
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Using the relationship

_1 _

I : -F [I+FG]1 :[I+FG]'1F

B |
G : I _-[I+GF]'1G| [1+GF]1
B | 1t

I Gt

- -
'F l I

| -GlI+FGI? |' [1+GFI1

it follows that [[+GF]'1G = G[I+FG]-! and [I+FG]-!F = F[I+GF]'l. Using these new relations

|
G-Ft |I+F*F G | 1 -Ft !

Therefore, the power in subregion B is given by

E,
Jm [ m
+ -
IBx 1 I G C | D VAx
SR [P [ PO | O
o ;m | [ m
Li _ + Al
B,
Jm PRI m
IBx C+GB|GA-D VAx
- Ivm + | + Vnrn
| Ig | | B-FfC | A+F'D [ V,,

The following substitutions will ensure that PX; = Pgi for any number of x-modes in subregions

Aand B

D—->Co
B — AT
A — CtF

B — AtG
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As in Section 2.3.2.3, these relationships must be satisfied automatically for an infinite number
of modes in subregions A and B, since both the field matching and power conservation will in
principle be perfect. This can be proven by using completeness relations for the y-mode fields as
follows

A l/u

q Y Z v
Yulu NXE
___._m " * P ’ ”q * _rq , ’
=k:10j.[IBy(y) IAy(y)ZIAy(}/) IAy(y )dydy
SR q

G)HOyu o

=—< | I (y) I, (y)d

X j B, y A, y/ay
20

=By as required.

Similarly
NTMyu W, Y
[ca],, = jv 'V, , Wy kﬂ? jVAy(y') Va, ()Y
W 0
YuYu NM
=20 | [V, 'V, ) ZVA vV vy dy
kz By 9

Yu
WE mn %__np
= [ Vs, 'V )y
Z Y
=Dyp as required.

NTEyu
[A*G] Z jz (y' )IA (y')'dy’ ‘”“0 jz (y)'I3 ,()dy
9 z v
NTE
CZHOIJI (y)'I (y)ZI (y)I (y)dydy
Z yiy q

Ol Wom e
= [ 14,01 W)y
Zu
=Bpp asrequired.
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NgMy” Yu
'F| = " v ay (v v oy
c F]np' Y Va0 Vg Wity [ Vs, Vg (y)dy
9 z y
YuYu NgM
& " v L :
=k—n9f JVAy(W Vg, (") 2 Vp,(y') Vg, (v)dy dy
Z nu q

o Yu .

= j Va, ) Vg (1)dy
Z Y

:Anp as required.

The final form for the coupling between TE and TM-to-x modes in adjacent subregions A and B
which ensures conservation of complex power is therefore

B | . m B | Jm
I l 'F VBx C l 'Cq) VAx

| win - | Wi
| G | I ||V, | AT | A V4,
B I ar.m PP
1 | -® IAx C | -C'F IBx

l L - Tt}

t t
. r I | —IAx | ATG | AT | —-IBx

III.2 TE, TM-TO-Z COUPLING

1121 Electric Field Matching

To evaluate the x-mode coupling at subregion interfaces, the components of the x-modes’
constituent y-mode electric fields tangential to the interface are matched across the interface.

y-component

Matching the y-component of the electric field at the interface between subregions A and B
yields the expression

TE ™ TE

Np wmn  wn kma)#o Ng mp o p Na i wi

2 VBx IBy »- J]—(T— Z VBx IBy )= z VAx IA}’ (}’)
n T, p i

NTM
- 2 2 VAJr IAJv »
T, j
Using the orthogonality of TE-to-z y-modes in region B

h wi nj *
18,015, (5 dy=8;
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and integrating over the subregion interface yields the coupling equation

TM TE
nmn kma) N
v _szﬂ sz jIB ()" I, () dy = sz JIB ' Iy, ) dy
T, p v b
TM
(0
Jkﬂ ) Vi, sz ' Iy, 0 dy

T Y

This equation can be expressed in terms of the coupling matrices G, A, and B as

nmn NTM NTE wmi t m]
z anVB 2 Am VA 2 Bn]
p i

In anticipation of the further derivation to ensure power conservation, also define

Fn

mw Yu wn % 1P
p =gt [ I, 00 g, Oy

Tm 3
z-component

Matching the z-component of the electric field at the interface between subregions A and B
yields the expression

NM NM

tmn_ n

2 Ve, VB, ()= Z VA VA »
Using orthogonality between TM-to-z y-modes in subregion B

h i lj *
vV v dy=6;;
jO B, » B, () dy=0;
and integrating over the subregion interface yields the coupling equation

N
= VA _[VB ) VA () dy
i b/l

This equation can be expressed in terms of the coupling matrix C as

vmi

zcm A,

II.2.2 Magnetic Field Matching

To obtain the remainder of the coupling expressions needed to evaluate x-mode coupling at
subregion interfaces, the x-modes' constituent y-mode magnetic field components which are
tangential to the interface are matched across the interface.
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y-component

Matching the y-component of the magnetic field at the interface between subregions A and B
yields the expression

m
'mn vn
Z A, Va (J’)+—Zk—— ZIA VA = Z[B VB N +—~5— 2 213 VB 62
T T
Using orthogonality of TM-to-z y-modes in subregion A
h i S
JyVa, 0V O dy=8;
and integrating over the subregion interface yields the coupling equation
m NTE N
mn k CDSO ump
ij OV 0)dy= 213 j Va O) Vi )y
b/} i J’l
k" weg
J— j Vi, )" Vp  0dy
Tm »

This equation can be expressed in terms of the coupling matrices ®, C, and A as

NIE i . N o
IA +z‘pmp ZCm IB +2Anj
p

In anticipation of the further derivation to ensure power conservation, also define

" we
F,p =270 jVB VB, ) dy
kT
m.
z-component

Matching the z-component of the magnetic field at the interface between subregions A and B
yields the expression

E

nmn nn wmi  ui

ZIA Iy, )= 213 Ig, ()

Using orthogonality of TE-to-z y-modes in subregion A
h ni uj *
fo Iy, (D1a,(y) dy =9
and integrating over the subregion interface yields the coupling equation
nmﬂ

2 I, f Ia, )" 15, () dy
Y
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This equation can be expressed in terms of the coupling matrix A as

uml

z Am B,

Il1.23 Complex Power Conservation

To ensure power conservation across the subregion interface regardless of the number of x-modes in
subregions A or B, the technique described in Section 2.3.2.3 is used. By constructing column
vectors for the transverse eigenmode voltages and currents for the mth z-mode, with the TE and
TM components separated, the coupling expressions from the field matching can be written in

matrix form
[ 1 : o__v':; [ ¢ : o——v';nx
[ 1 : (I)_-I';nx [ ¢t : A——[';;
|0 : 1__1':; —_o :A+__I'Bx

The power flow through the discontinuity for the mth z mode is determined from the fields in
both region A and region B. The coupling between the modal fields in regions A and B must ensure
that the power coupled from modes in region A to modes in region B is the same as the power
coupled in the opposite direction.

N2 NS
jE xH, "dy = ZZV""’I'"P jeTA xhp. " dy
Yt
N} NB
Pg = jE xHYdy= ZZVg’"Ig’P jeTB xhf, "dy
/] n.p ]

*
For any given region, e’fB and hé{B may be split into TE and TM components and the power

integral evaluated as follows

u o, vp* Yu n -p* vp*
IeT Xhy ouydy= J‘[:ez u, x(hy uy +hz u,) [euydy
i N
Yu
n Wp *
= [ -e, O, )" dy
b

= [V] 0w, o' ay
M

= 6np
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yu wn "p* yu wn wn "p*
J“’T xhy euydy= J (ey uy +e, u)Xh, uz:loux dy
3] Y-
Yur . "
= ||ey Mh, ) ]dy
o
Yu o " .
=-[ 1, I, ) ay
b7
= 5np
yu n np* yu n n np* np*
j er xhy euydy= J (ey uy +e, uz)x(hy uy +h, uy)|euydy
Y -
Yur wp . m "
= [|-ey O, )" —e; By " |dy

i

k

Yu * Yu
Lo o wp WE, SR AN
=—Jéﬁ | ;o (y)*dy+iﬁ-‘ljvy V) ) dy

Yu o p*
jeT xhy eu,dy=0

Yt

Vi

T

Using the previously defined TE and TM-to-z x-mode coupling matrices, the power in region A is

given by

_I':;_ _cpf-r: I _j_v'zt
_1';;_+— C : 0 I : 0 V'Z‘x
_I';Z_ A*-Acp’f: A qn’f-r: I | V'f;
rI,;;-Jf- C : 0 v';nx
_I'}';z_ A*-Ar: A V':;
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Similarly, for region B

I —

am I aF..m

IBx I | 0 VBx

(N | Wi

t.

_IBx_ | F G , I | _VBx
.t - -1

m ] | |

ol + | | [

Iz F1-G I G I -B A
| "By L | AL | ~ |
_  t R -

am | | Jm

IBx 1 | 0 C | 0 v Ay

Tt | | N
_IBx.. - F+ I I S _B I A - VAx
— G -

a1} | Jn

IBx C | 0 \'% Ay

L | W

tc-

—IBx— F'C-B I A VAx

Note that T denotes the conjugate transpose of the superscripted matrices. From the completeness
relationships shown below, the power crossing the discontinuity can be calculated for the modes

in both region A and region B. The following substitutions will ensure that PAmx = Pg; for any

number of x-modes in subregions A and B

A —>CtF

B — AT

As in Section 2.3.2.3, these relationships must be satisfied automatically for an infinite number
of modes in subregions A and B, since both the field matching and power conservation will in
principle be perfect. This can be proven by using completeness relations for the y-mode fields as

follows

(€], -

“’60 j Vg, 00V, 00y j Vg, (Vg ()'dy
T /] N

YV NgM

HVA »* VB (y)ZvB O VB () dydy
Tm v

k"’(o

km Yu
—zkz—jv,, " VB () dy
Tm

= [AT ]np as required.
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Similarly
N Yu Lo
[AT],, = Zjl 0Ty, (y)dy—Z-— j Ly OOy )" dy
q Tm i
kma) YuYu NTE
=5 < [ 1 o IA (y)ZIA (y)IA (y) dy dy
T iy

kmwllo u nn ' p
=L [ 1y 01 () dy

k y y
Ty

=B,, asrequired.

The final form for the coupling which guarantees conservation of complex power regardless of
the number of x-modes in subregions A and B is therefore

B I | 0 ar m B C ! I m
I VB, 10 || Va,
| V"In - | V"In

| ‘G | I Jb Bx - "Ar I A b Ax

B | ar.m [+ [ |

I I 0 I Ay C | C'F le
I »m B | L
t
| T l I i —IAx | 0 | A a _IBx
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APPENDIXIV  SUBREGION COUPLING SUMMARY

The coupling between adjacent subregions has been determined using a field matching technique in
Section 2.3.2.2 for TE and TM-to-y y-modes and Appendix III for TE and TM-to-x and TE and TM-to-z
y-modes. The coupling expressions subsequently obtained ensure that the complex power crossing the
subregion interface was conserved, while still satisfying the field matching criteria when an infinite
number of modes are included. The coupling expressions for two subregions where the x-mode fields are
expressed in terms of mode functions which may be TE and TM-to-x, y, or z are listed in this section.
The full derivation is not considered worth repeating, and is almost identical to the approach
described in Section 2.3.2.2 and Appendix III. The full coupling expressions for arbitrary y-mode
reference directions allows the use of different combinations of TE and TM-to-x, y, and z y-modes in the
same two-dimensional cross-section.

IV.1 TE, TM-TO-YMODESIN A, TE, TM-TO-Y MODES IN B

I I 'F VBx C | 'C@ VAx
| M N | V"In
| 0 ' I g0 Bx | 0 ' A L Ax
B I qr m B | r,m
+
r , o I Ay ¢, 0 IBx
I v - (7
1 t
L r | I . _IAx _A G I A . _IBx

nn np
Yu I *I
u By (}’) Ay (y)

A, = dy
" €A(y)
b/
yu "n * P
Crp = [ Vg, 0)"Viy )y
Y
k'"w
Fp= j Vg, ()" Vg (y)dy
“PB b/
k'”a)
@y = j vA »* VA o) dy
”PA b/
m oy % Iy 30Tz ()
u
G AL B\ Byyd
np 2 y
eg(y)
Upg i
CD.UO IA (}’) IA (»)
Fpp = J dy
€a(y)
“PA b
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IV.2 TE, TM-TO-X MODES IN A, TE, TM-TO-X MODES IN B

- | r..m B | . m
I , -F VBx c | -Co VAx

| V"m B | V"m
- G l I Jdb Bx L Ar | A AL Ax
B l _—'In B + I + ] ',m
I | -0 IAx C | -CTF IBx

| (o m l o

U t
| T 1 T4, | A'G | At || Ig,

Yu
un np
Anp= | 15,00 Iy, ) dy
i

Yu
tn tp
Cop= | V5,0V Ve, 0) dy
N

WEy

Yu
n np
Fup =~ [ V5,00V, () &y

L7/

Yu
WE tn np
By == [ Va,0)"Va, 0) &y
oy

Yu
o wn P
Gop =50 [ 15,0015, ()

m
Z oy

Yu
o, nn P
Top =50 | 1, 0 T3, )

m
<y
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Iv.3
|
r , o
|
G 1
|
I | 0]
|
0 | I

TE, TM-TO-Z MODES IN A, TE, TM-TO-Z MODES IN B

B | r.m

- | V"m

| -AT | A || V4,

B | I m
t t

ct | CtF || 1y

B | Wi
t

| o | At | Ig

Yu
nin np
A= [ Ip, ()" Iy () dy
i

Yu
n 'p
Cop = [ VB, ()" Vs G) dy
Y

K weg T np
Fyp = sz_o [ VB, )"V, () dy

T, ¥

Yu
& =Mj'v'"()*vnp()d
np k% ANY) VA Yy ay
m y

G

mw Yu i p
=g [ 1, 00" I, () dy

Tm y

kmw Yu - p
Tpp = —zk%ﬂ [RANORAOL

3]
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IV.4 TE, TM-TO-Y MODES IN A, TE, TM-TO-X MODES IN B

- | ar m B | . m
L -F |l vg C | -co ||V,

| e - | e
L G | T iLVs, L 0 A L Va,
[ ' ™ T ot et ™
Lo |fr, ct | -C*F || 1y

] i - | [riag}

+ +
| T | I ——IAx —AGI A __IBx

uhn * np
Yu l 1
U B, ) A, »

A =
" es(y)
Nt
yu n * +D
Crp= | Vg 0" Vy 0y
Y

Yu
e n "p
Fnp =" | Vi, 0)"Vp, )y
oy

K™ oey 2 wp
¢np =_ZT2‘— I VAy ()’)*VAy (y)dy

Ups

G —wﬂo yu Inn *Ilp d
np-—ij 5, 0)" I () dy

Z oy

y wn % vp
KMoy uIAy(y) IAy(y)
Ipp =——

Ups

d
£4(y) i’
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IV.5. TE, TM-TO-X MODES IN A, TE, TM-TO-Y MODES IN B

| ar. m
I , -F VBx
| m
L _VBx
| ar.m
I, -o IAx
| o B
r | I L Ay

Ay =

Cpp =

Fpp =

Dy =

Gyp =

Ty =

B | . m
C ! 'C‘D VAx
| winl
| AT | A [[[Va,
T ar m
| wmn
t t
L A G | A _ _IBx

Yu p
nn * "
[ 15 Iy oYy
y y
N
yu tn %, ' P
[ V,00" Vg 0y
3]

kma)é‘oy" "n np
| Vg, 00"V Dy

Upg i
E’f‘lyfv'"< YV () dy
km Ay y Ay y

Z 0y

m e e Iy O I (3)

u

k'opo °f °B,"Y B\

'2
Upg i

d
ep(y) Y

Yu
QLY [,y P
—n [ Iy 0Ty )y
Z
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1V.6 TE, TM-TO-X MODES IN A, TE, TM-TO-Z MODES IN B

r, o
|
G |1
|
I | '¢
l
r ’ I

p— | -— m
C | 'Cq) VAx
= l V"In
» Ar I A JL Ax
B { ar m
t 1
¢t C'F IBx
- | Wil
t
| 0 | AT || Ig

Yu
nn np
Anp= | I5,0)" Iy () dy
y

Yu
n 't p
Cop= | VB,(0)"Va, () dy
Yi

K ey T np
Fpp = _z.kz_o | VB,6)" VB, () dy

T, ¥

Yu
we o np
Prp == [ Va,0)"Va, ) dy
RS
kmw‘UO Yu wn . P
Gyp =Ly [ I, 00" 5, )
Tm oy
Yu
w nhn tp
Tp =2 [ 1, O 4, 0)
Loy
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IV.7 TE, TM-TO-Z MODES IN A, TE, TM-TO-X MODES IN B

I qr. m
I | 'F VBx
| v
G | I 1L By
] qr.m
I I ) 1 Ay
| Ium
0 [ I L Ay

- | . m

c , 0 Va,

B I Wi

| -AT | A | Va,

B | r.m
ot

ct | -C'F || 1

[ Wn
1 t

| A'G | At || Iy,

Yu
nn np
Anp = | I5, )" Ia, ) dy
Yi

Yu
Cp = | V3, ) V4, () dy
Y
wey F m P
Fop =" | VB, 0"V, 0 dy
oy
m Yu .
@y =52 [V 0)'VE ) b
m.

Yu
(1) nn +p
Gup =25 [ 15,005, ()
Z
i
kmwu() Yu - . 1P
Top =g | 14, )" Iy, ) dy
m
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IV.8 TE, TM-TO-Y MODES IN A, TE, TM-TO-Z MODES IN B

I | 0
]
-G ] I
I : 0
[
r I

B | qr..m
C l 'C(D VAx
= | V,,m
| 0 | A L Ay
B | ar.m
+ t
C | C'F IBx
- | m
f
| 0 | AT ][I

nn np
elp o) Iy, ) .

:yY6))

Yu
N 1P
Cop= | VB, ()" Va () dy

Y1
k" we
F,,=-%7"0 j Vi, () Vg, 0) dy
kTm Y
(05
D, =<0 jVA »'Va 0 dy
Upgy Nt
kma)ﬂo yu - N p
Gyp =7 [ Ip ()" I () dy
m oy
m Yu Iy *I'p
r = kZ ol Ay » Ay()’)d
“pa NI
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IV.9 TE,TM-TO-Z MODES IN A, TE, TM-TO-Y MODES IN B

i m
-F VBx
ried

I || Vs,

I _m

® |1,
o

I —IAx

™ [ . m
c 0 VAx
- | e
| 'AF l A JdL Ax

B [ qr m

+
ct | o IBx
red]
AtG | At I
5 | dL'By

Yu
nn np
A= [ 15,0V Iy ) dy

Vi

Yu
tn 1 p
Cop = | VB,(5)"Vis () dy
Yi

K weg ¥ o np
Fyp =32 [ Vg (0)'VE () dy

Upg Vi

KM@ E wp
=750 [ V) 0)'Viy 0) dy

Tm

@,

un * 'p
Klouy t 18,0 1, ()
np = 2
£
kupe 3, B(Y)

km(l)[.l() yu wn * 'p
Top =70 [ 14,01, () &y

m y[

G dy

99




DSTO-RR-0027

THIS PAGE INTENTIONALLY BLANK

100




DSTO-RR-0027

APPENDIX V ANALYTIC ZERO, POLE LOCATION TECHNIQUE

From the moments Sy, derived from Cauchy's Theorem as discussed in Section 2.3.2.7, the position of
zeroes and poles of a function within a given contour can be determined analytically in the following
cases.

Sp=0

Can handle no zeroes or poles, or one zero and one pole. If there are no zeroes or poles, then 57 also
equals zero. For one zero and one pole

Si=a-p
2 2
Sy =z{ —pi =(z1—- 1Nz + 1) = Si(z+m)
So
i[. s
=—|§+-=
A 2[1 &]
1['s,
——|2_§
. Z[Sl l]
So=1

Can handle one zero, or two zeroes and one pole. For one zero, z1 = S1. For two zeroes and one pole
Si=q+n-p
2,.2_.2
Sy=z +z—pi

3,3 3
SB=z+n-pi

So
288
gtz =— =
1 2 3S2—S12
and
n=C-§

Hence, z1 and zy may be separated as

4= %[C+\/C2 +282 - 4CS; +252]

% =%[C—\/CZ +28% - 4CS, +2s2]
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So=-1
Can handle one zero, or two poles and one zero. For one zero, p1 = - S1. For two zeroes and one pole
S1=7 -Py~ Py
2 2 2
$L=4 -pi —P

3 3 3
3=z —pi — P

So
pL+p _285-8) _
! 2 3S2+Sf'
and
Z1=C+S1

Hence p1 and pp may be separated as

m:%{C+JE2+z§+4c&—2&]

_1
P =3

[C—JC2+Z§+AC$—2&]
Sp=2

Can handle two zeroes

Sj=7 +z

=2 +23

=%Frqh@—#J

2
1 2
Z2=5 S1+ 2S2—Sl

where z1 and zj are given by

So=-2
Can handle two poles
Si=p1+p;

2.2
S =pi +pi
where p1 and p; are given by

:

Pl =%[-51 +y-25, —512}

:

P = —[_Sl — 25, - ¢ }

[\S R
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APPENDIX VI  CROSS SECTION FIELD EXPANSIONS

For evaluating the z-mode fields in each section for output and for calculating the coupling between
z-modes in adjacent sections, the z-mode fields are expressed in terms of the x-mode and y-mode
equivalent network voltages and currents. These voltages and currents are defined in Section 2.3.1 for
y-modes and Section 2.3.2 for x-modes. The derivation of the x-components of E and H from the y and
z-components is described in Section 2.3.2.9. The y and z-components are written directly from the
definitions of the y-mode and x-mode field in Sections 2.3.1 and 2.3.2. The power transmitted in the
z-direction by the z-modes in each two-dimensional section is derived from the field expansions as
discussed in Section 2.3.2.9.

VI.1 TE, TM-TO-Y MODES

N L)
B = %V e
NTE
sz (x)V, ") - 2 km‘,‘,’2 Vy (x)V;"(y)
NTE un
le )V, )
NTM
2—1—“’“—% @I, )+ 21 "W )
Therefore
7 N
r= Y 2TV 0 Yl @Yy 0)
and
NTE
va @I, ) - Z ‘,‘,’fOV W, )
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The power flow in the mth z-mode through the two-dimensional section is given by

NTMNTE Y
Z Z JIx W, ()" dx [V ()Vy )" dy
n p x, yl
NTMNTE
(y)l (y)
- 1% V *dx Loh»
RS el S0

NTE TE y
) vmp £ o 'p
+ 2 z _z_/‘(l j (x)lx (x)*deVy MV " dy
b7

NTM TM ]
a)eo y (y) (y)
+2 Z 2 jv (x)V )de'——g—()——dy
up .Xl r
V1.2 TE, TM-TO-X MODES
N;‘M o NTE
Er=Y k‘,‘n"v @I, )+ va "W, )
n Z
NTM NTE
wg wmn nn
ZVx (Y, )~ ¥y 0y (0Vy (3)
n kZ
NTM NTE
8 amn unl
2 I, ()V, )+ Z =05 (x0V, O
n kZ
N;‘M o NTE
H'=Y, k‘,‘,,Ol @, )+ 21 @I ()
n e
Therefore
N'[‘M 2 n2
m y k()&’r—'kxmn mn n
Ef==) L (0OVy )
n Kk wege,
and
n2
NIE [kgs,—kxmn] N
Hl'=-Y t———=V, (0, (»)

k7 opg

n
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The power flow in the mth z-mode through the two-dimensional section is given by

2

T™ A TE | 1,2
NNl:k0£ km

XL

S KM e

E3
p % o,

NTMNTE [kge —k, 2 :I

+ZZ

m
Z

4 2 Xmn

1 2
NI NT [kgg,_k X,

1

m
" p k; wege,
2 nz *—
NJENTE [koe ~ ki |

+ZZ

p K a’#o

1" L 0" ax j Vy 0V, ()" dy
X i

[V v (o ax j I, L 0" dy
X N

Yu
rmn rmp n tp
1 wn @ dx [V o)V ) dy
X /]

Yu
wmn nmp nn np
(v vy ot [, oL oy
X Y

V1.3 TE, TM-TO-Z MODES

NTE

TM

zv "Wl ()- Z J-k“’ﬂv @1, ()

NTM

T,

m

va @V, O)

NTM

21 ", (y)_z&, "WV, )

NTE

2 I, @I, )

Hence
TE
N y k2
=3 Mg
n kTm
and
NTM

H" = Z kogrv (x)I (- E%V

kT

n

™
N m

V- 3 K @Yy )
n WENE

0¢r

TE
N m

(x)I (y)
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The power flow in the mth z-mode through the two-dimensional section is given by

Y kO
RPNy Fi i s v} oo o' ay

-3 3 ke jvx )V, (x)dle Oy ()" dy

N;"E NTM
14 Tm Xy
NTE NTM
n p kTm X
NTM NTE *x,

N

y mpm
+y zk Wil ey (x)dxjv OV, ) dy

n p kTm grxl

NTM N;’E

N

_2 2" K jvx ®Vy (@) dle WL 6)dy

X

NTM NTM

N

%o
+Z 2 ——z_jlx WLy () dx [Vy G)Vy ) dy

NTM NTM

M

2
I S LA N POV

n p kT kT x]

NTE TE

i

Yu n "
L3y Wk an oy J L @L 0 [V, vy o) dy

n p kT kT X

NTE NTE m

]

+22 jv x)V. (x)dle WL, () dy

xl

N
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APPENDIX VII SECTION COUPLING

To evaluate the coupling between z-modes in adjacent sections A and B, the components of the electric
and magnetic fields tangential to the section interface were matched over the interface The technique
used for the derivations in this appendix is identical to the approach used in Section 2.3.3.1 for TE and
TM-to-y y-modes in both section A and section B.

Calculation of the section z-mode coupling allowed the individual sections to be cascaded together to
form the complete element being analysed as discussed in Sections 2.3.3.2 and 2.3.3.3.

VII.1 TE, TM-TO-X COUPLING

VIL.1.1 Electric Field Matching

To evaluate the z -mode coupling between adjacent sections A and B, where the y-modes are TE
and TM-to-x in both sections, the x and y-components of the electric field tangential to the
section interface are matched. This section of Appendix VII describes this process, which closely
follows the TE and TM-to-y mode analysis in Section 2.3.3.1.

x-component

12
Np " NEM[kggB‘kamn]
DVE| X
m

n

wmn n
Ip (x)Vp ()
ky, OEGER B By
'2
W (np Bea-kiy ]
L Ve )
P g Kz, @084 (VIL1)

Both sides of Equation VII.1 were multiplied by

NTM
B (R4} * (1] *
2. I, (0" Vg ()

N

Integrating over the aperture in the x and y directions and applying orthonormality of the

y-modes yields
AVBZ = BVAZ
where
NgM [kgEB— 2 ] %u
xB mp mp
Amn = 2~ ——"= | Is, 0)Ig, (x)*dx
p *p®0fB
TM M (1.2 2
Ng Ny [kOf:A _kxAnq]
B, =

n
k7, WEE L

Xy Yu
1ng vmp rq 'p
[ Iy, 0I5, (x)"dx [V (5)VE, ()" dy
P q Xy

N
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In addition, multiplying both sides of Equation VIL1 by

N
Z“’e" Iy, ()" Vg, '

S sz

and integrating over the aperture yields

SVBZ =TVAZ
where
- -
NENM | kyep - ka g amp g w
Z Z - 4 [ Iy, (I, (0*dx [Vg, (V) dy
kn km Yy y
ZB"ZB X Vi
2]
NEENDM k&eA—kxA o Y e
Tun= Y, ¥, b2 [ Ly (D)Ip, ()" dx [V, 00V, ()" dy
P 49 szsz X Yi
y-component
N3 NIE NIM
ZVB ZVB ()1, 0)+2 ZVB ()15,
m kZB p
NA
=YV ZVA Wiy, )+ el ZVA D14, )
i J ZA (VIL2)

Both sides of Equation VIL.2 were multiplied by

.2 *
NIE [ko €p— ]
7 Vg (0)"Ip "
r x y

Integrating over the aperture in the x and y directions and using orthonormality of the y-modes
yields

HVBZ - JVAZ
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where

n2

2
I:kO €p— ka

TE *
NB kz, O

} [ Ve, @)V, (0" dx

Xy

*
p NTM[koé‘B ka ]
+
q

[V v dijB W1g, ' dy
km k X i

NTE likOSB kx; :‘
A3 [Vl vy (" d f Ly, ()5, ()" dy
NB q kZB w.uO Xy Y
Imn = Z

p NTM I:ko SB ka *}xu
£y [V Vg, () dx j I3, Mg, ()" dy
r x Y

kg';*k

VIL1.2 Magnetic Field Matching

To evaluate the z -mode coupling between adjacent sections A and B, where the y-modes are TE
and TM-to-x in both sections, the x and y-components of the magnetic field tangential to the
section interface are matched. This section of Appendix VII describes this process, which closely
follows the TE and TM-to-y mode analysis in Section 2.3.3.1.

x-component

N TE

n2
s 2[ _ZA”}VX:"u)I,';"y(y)

n

"2
ky

fp Flo ]
21” Ta Vg (915, ()
(VIL.3)
Both sides of Equation VIL.3 were multiplied by
NTE
A nrs * ns %
D Va, (0 14, )
y
5
Integrating over the aperture in the x and y directions and using orthonormality of the y-modes
yields

KI, =Ll
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where

ll2
N,{E [kgGA _kxA,, ]xu wip o
2L [Va, (V4 () dx
X

Kpn =
o kgoug
NENTE | KBeg—ker | y
A "B [M0BTRxp,, | ¥ g amp . F nq )
Ly, = 2 —k;'————- .[VBx (x)VAx (x) dijBy (y)IAy () dy
P q zg@Ho 4 b7

In addition, multiplying both sides of Equation VIL.3 by

EM
w o rs tS
>, vy 01, O

r
N sz

and integrating over the aperture yields

FIAZ :GIBZ
where
- o
NMNEE | kyea —key | % Yy
N nng rmp ng p
Fan= 3, 3, 23 [V (W, (0)"dx [ I )4, )" dy
P 4 kZAkZA X v
o e
N NEE | ke —kxp | Yu
wngq rmp ng 'p
Gun= 3, 3, ————23 [ Vg, (Vi (0)"dx [ I (DIg )"y
P 4 kZBkZA X; y
y-component
LA L " Na’ ey P np
ST X I, VA )= X LA, V4, ()
m n p kZA
NE ™ : NEE .
; vij vj WEy ik nk
=Dl | X 15, (Ve )= 2 74, DV, )
i j k "z (VIL4)

Both sides of Equation VIIL.4 were multiplied by

™ 2 w2
Ny kO €A ky A

*

] (22} * [F) *
T4, () Va, ()
s erA WEHYE L

Integrating over the aperture in the x and y directions and applying orthonormality of the y-
modes yields

Cl, =Dl
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where
) , )
|:k08A kxA :l
= J’ Iy (DI, (x)*dx
Ny k, weye X
ZA 0cA 1
Conn = z N
Pl NEE [ko Eq— kxA ]
-y [ I ory” (" ax j Vi, OV, ()" dy
k" k"
| 4 ZA ZA Xy Yt |
, )
NI l:kOEA kxA ]
. : [l LY (o a j Vs, ()Va, )" dy
Na'l g kg, oogq &
A l Vi
Dy, = z X
p NLT;E |:k38A kxA j|
-y [y 1 &) deVB ()W, 0)"dy
LT km kn X Y |

VIL.1.3 Complex Power Conservation

As for TE and TM-to-y modes, using the field relations in Section 2.3.2.8, the power flow through

any given section is

N2 NA

P = isz Iy,

[kger mp
NTE NTH Tj Vv () dle WL, ) dy
S k k X b
30
p q [kosr"k 'ngq
———”i’— jl W, (x)*dx jv OV, o) dy
Pl
L z 7T X N J
™ 2
Ny (kZe -k, ]xu
14y —— 1 r” (0" dx
P k, wegE, ,
™ 2 *
N kEe k1%
+ Y ———m v v, @
p k;n w:uO Xy
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In terms of the previously derived coupling matrices
.;.
P =[1, | [¢f+F+KT][v, |
.‘.
= ¥ Topf
=[] P et r][Va
and
tot t
Py =1y | [A+H-8][vy |

=[IBZ]T [B+3-T][V, |
So for conservation of complex power, require
D' +N'-L'=B+J-Q
This is true by inspection. Therefore, to ensure complex power conservation regardless of the

number of z-modes used in each section, the following expressions for the current and voltage
coupling will be used

[C+F+K] ! [D+G+L]
[A+H-S] [B+J-T]

[Cy]
[Cv]

Il

[A+BH-5]" D +GT+Lf]

VIL.2 TE, TM-TO-Z COUPLING

VIL.2.1 Electric Field Matching

To evaluate the z -mode coupling between adjacent sections A and B, where the y-modes are TE
and TM-to-z in both sections, the x and y-components of the electric field tangential to the
section interface are matched. This section of Appendix VII describes this process, which closely
follows the TE and TM-to-y mode analysis in Section 2.3.3.1.

x-component
N2 gm NP ) NFF
z vmn " k, nwmp wp
SVEI—E— Y Ip (x)Vp () +—3— 3. Ip (V5 ()
WEYE * Y k x Y
m 0¢B 4, TB, p
A ; ™ TE
NZ i éA NA vif 1 j kg’ NA wik wk
=2.Va, Iy Vi )+—3- 3 I3 (Vs ()
; WENEL = x Y kT y X 'y
J i (VIL5)
Both sides of Equation VIL5 were multiplied by
NM
IS * ' 5 *
> Ip, (0" Vp, )
N
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Integrating over the aperture in the x and y directions and applying orthonormality of the y-
modes yields

AVy =BV,
where
p— n hn
I ()5 (x) dx
I e j 5, (15, @'
Ann = 2 k2 NgExu
p
+=—=0 3 [Iz (0, () dx f Vi (0)Vs, o ds
i B, ¢ X Vi A
r i NTMX T
ZA
Iy (Ols (x)dx [Vs 3)V5 ()'d
! J" @5 ()" yj a,)VB, ()" dy
1 ]
By = 2 ) NTM
r ko
ot > i @i o d j Va, 005, ()" dy
| TA, r Xy B/} J

In addition, multiplying both sides of Equation VIL5 by

r*

nrs
E@w%m
T Br s
and integrating over the aperture yields
SV B, = TV A,

where

k'l km Nng
—as N (I (0, () dx[VB G)Vg, 0)' dy
kTB EB q x N

14 kokm GJSON x

v 20y L ol (o de f Ve, 0)Vz, )" dy
i krg kTB T x Y i

[ kn km NTMx

m-ﬁul—2ja<m@ uwhﬁQOM%@)@
Np kTB €A q x Y
Ton= X 2 N
p kok a)eo

bt jg(n@<nd4wuwmcww
i kTgm TA rox Vi .
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y-component
NZB k m * NTM NgE
DVE |- 2 Vg, (0I5, ()+ 2 Vi, W5 ()
m kTB n
Z .
=2 Va |- 2 Vs (x)IA )+ 2 Vi (x)IA )
i kTAi (VIL6)

Both sides of Equation VIL6 were multiplied by

NZ;E

sz
Vs, (0 I )
e S

Integrating over the aperture in the x and y directions and applying orthonormality of the y-
modes yields

HVBZ=JVAZ
where
o TV""”(x)V"'"‘Yx)*dx
NE?| @Ho o B T By
H, =
m zp: m* n NMx,
ez S, Vi v e i I3, (N5, ()" dy
n q X ¥
K N |
B
NTE| @ ) f Vi, OV, (x) dijA (y)IB »)*dy
] _ Z q X b/}
mn —
o | ke NEY
) Vi cov? a1, o)l 0 dy
| TAn rox Y |

In addition, multiplying both sides of Equation VIL6 by

NTM

kiey &
050 Y Vi, ()" I )"
kT B Ky
r
and integrating over the aperture yields
PV Bz = QV Az
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where
[ 2 N, Ya ]
k £ nnq rmp ng 4
BN Vg, 1)V, (0)'dx [ 15 ()5, () dy
™ x x y Y
Ng kTB,,, 9 x Y

Py = 2

k k" WEYE
P _L_M 2 JVB (X)Vp, (%) dijB (y)IB ()" dy

A kT kTB rox yl |
NIEx,
k £
N Y [Vt v () ds J Iy ()5, ()" dy
NB kTB q x, yl

D kokn (08083 Ty
A —— jVA DV, @) dxj [4, )5, (" dy
krg_ kTA,, rox »

VIL.2.2 Magnetic Field Matching

To evaluate the z -mode coupling between adjacent sections A and B, where the y-modes are TE
and TM-to-z in both sections, the x and y-components of the magnetic field tangential to the
section interface are matched. This section of Appendix VII describes this process, which closely
follows the TE and TM-to-y mode analysis in Section 2.3.3.1.

x-component
m NTE kg
21'” " ZVA ()L, ()= 274 2 Va, DL ©)
TAm
NB i NIE 2
= 2 l ZB EVB Wi, (y)——k——— Z VB (x)lB )
i Tp;

(VIL7)
Both sides of Equation VIL7 were multiplied by

TE

2 VA x)* IA »*

Integrating over the aperture in the x and y directions and applying orthonormality of the
y-modes yields

KI, =Ll
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where

Kpn= > 2"’

p| kje g5 q p Y g p
+ 1 nin, * t " *
DA Y Vi GV, ' [, ), )"y

NIE

Ly, = z

NTM x
I A T S
—-0ZB N [V (Vi (0"dx [I5 (NI, ()" dy

&y va""" XV (x) dx
A A
wuo X X

L TA, q x /]

—NgE kn Xy ]
Y - [Vg ()Va, ()*dx j Ig, Iy, ()" dy
9 @Ho X b/]

k 2
TB, r x Y i

In addition, multiplying both sides of Equation VIL7 by

and integrating over the aperture yields

where

Gun =

NTM

k! *couo Ng!
meuw
kTAr Ky
FIAz = GIBz

k ? N x nnq rmp * yu ng p *
> [Vit vy @ dx [ I )L, 00" dy
q

TA,,, x Y

K B wpge
____ﬂi Z j Ve (Ve (x) dx j Ix, O)s, ()" dy

kTA kTA r x; v |
km kn N xu ]
A= Y [Vl Vi (o' ar j I, (s, ()" dy
kri An 1 % b/
* 2 NgM ;

ky: kyouge
_M Y | Vi (x)Viy. (x) dx j IB (y)IA ()" dy

kTAm kTBn r ox i

|
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y-component
NA NTM m NTE
WEY "G wmp wp

WA ZIA (OVa, 0+ e ZIA,, (x)Va ()
m TA,

N INIM ; NEE i

—ZIB S ip, <x>vB (y>+ ZIA x)vA )

TB.
i J

t (VIL8)
Both sides of Equation VIL.8 were multiplied by
* NTM

Z Iy (x)" VA "

r

60808A

Integrating over the aperture in the x and y directions and applying orthonormality of the
y-modes yields

CI, =DI,

where
*

kZ; Tl-np( )Ivmp( )*dx
X X
NM| WEoE, A A

l

km n NT b

+kZA2 4 Z jIA (x)IA (JC) dXIVA (y)VA (y)*dy
n A q X i

* NMx,
Z [ oty o dijB )WV, 0" dy
X Y

m

NXM weoe A

m nN X

Kk
Tl e, szz - 2 f Ig, (D4, (x) dfoB DV, ()" dy
r xl yl |

In addition, multiplying both sides of Equation VIL8 by

2 A
031 VA o)
kTA, s

and integrating over the aperture yields

MV, =NV,
4 Z
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where

2 NA Xy
8 1 i o' as [V owi o
NEX‘E TA, 9 % i
My, =
n NA u
7| RO S i oy [ o o7
kTA TA, T x b
2 NB Xy
=Y s I, (0*dx j Ve, 0V, ()" dy
NIE| kp2 y
z A q x1 )
Nyn =
2, n NB u
’ MZ [ 15, I, () dx j Vi, 0)Va, ()" dy
kT TB r Xy b/
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F
i

VIL.2.3 Complex Power Conservation

As for TE and TM-to-y modes, using the field relations in Section 2.3.2.8, the power flow through

any given section is

NANA

tot
P, 2 XVA IA

kg N;MN;EX“ wng mp T "q P x
22 X LT @ [V 0V 0
T, p 4q x Y
2 NTMNTEX
k € ¢
Xobr 2 z J’v @V, () dij (y)I ’ ()" dy
krm P 9 x y
nkm NTENTM
+_z_z_2 2 jl WL, (x) dij OV, ") dy
kT €& p 9 x Y
k"km* NTENTM
2 2 jv @V () dxfl WL, ' dy
Tn P 4 x b7}
kn NTMNTM
s 2 3y j I I, (0)*dx j vy oIV 0 dy
9 x i
k2kn TMNTM
#ﬁ’%ﬁcz ¥ vV w dsz M, 0)*dy
krkr P a x »
k2km NTENTE
a)
—f?Z 2 _[1 @I () d.xjv OV, " (*dy
T, kT P 9 x i
- NTENTE
+_z_zzjv @V, (x)dle WL o) dy
P 9 x /] d

In terms of the previously derived coupling matrices

and

Py =[IAZHCT—FT+KT+MT][VAZ]

= [IBZ]Jf [pf -Gt +1f +NT][VAZ]

Py =[IBZ][A+H—P+S] [VBZ]

=[IBZr[B+]—Q+T][VAZ]

So for conservation of complex power, require

DT—GT+L*+NT=B+J—Q+T
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This is true by inspection. Therefore, to ensure complex power conservation regardless of the
number of z-modes used in each section, the following expressions for the current and voltage
coupling will be used
[Ci]=[C-F+K+M] " [D-G+L+N]
[Cy]=[A+H-P+S]! [B+J-Q+T]

=[A+H-P+S]" [D' - G"+ L' +N]
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APPENDIX VIII SECTION COUPLING SUMMARY

The coupling between adjacent sections with the same choice of eigenmode (TE, TM-to-x, y, or z) has
been determined using a field matching technique in Section 2.3.3.1 for TE and TM-to-y y-modes in both
sections in the element, and Appendix VII for TE and TM-to-x or z y-modes in both sections in the
element. The coupling expressions are formulated in such a manner as to ensure that the complex power
crossing the two-dimensional discontinuity is conserved, regardless of the number of z-modes that are
included. The coupling expressions for two sections A and B where the fields are expressed in terms of y-
modes with arbitrary reference directions, i.e., TE, TM-to-x, y, or z, are listed in this section. The full
derivations were not considered worthy of repetition and follow Section 2.3.3.1 and Appendix VIL

VIII.1 TE, TM-TO-Y MODES IN SECTION A, TE, TM-TO-Y MODES IN SECTION B
[Ci]=[C-K+M] ! [D-L+N]
[Cy]=[A+H-P]" [DT-Lf +N]

o -t

.Uo
j Iy, (0Ig, (x)"dx
MPB Xy
App = 2 TMx

+ Z JIB (x)IB (x) dxij (y)VB )" dy

7 x b/ i
Ng" k”‘ wn mp
Hyp= 3 B j Vg, (Vg ()" dx
p "PB
NEE NG, %y Iy (NIg, )
Py = V V dx
-y %I{ 5, Vg, (0 f e
NEENEE & ’”* Xy
=3 Y O il o I Vg, 0)V4, () dy
P4 ”PA x| Y
NTMNTEX
Nun= 3 3 [In ly” (" dr j Vi, ()VE, ()" dy
P q X v
- i
K BmAm
1% V dx | X—2—d
N[M %J B OOV, j e
Ly = z Ml
P N K, o J Y, ()dxyle(y)A(y)
X X P A— A
r A e4(y)
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NA km
Con = 2 —_ IIA (x)IA (x) dx
P upA Xy

NEx, L w Lot |
Y Ve vy, ' dx [ 2= —dy
Nu| Lo AT £4(y)
Xl b/
Ko = z
p CO () anp
VA X)VA (x) dx
“PA i
NTM NTEx,
=3 Y (I wn @' j Vi GV, () dx
P 49 x N

VIIL2 TE, TM-TO-X MODES IN SECTION A, TE, TM-TO-X MODES IN SECTION B
[Cr]=[C+F+K] ! [D+G+L]
[Cv]=[A+H-S]"! [DT+GT+Lf]

NgM[kgeB kg }

Amn =2, Iy, ()Ig (x)*dx
§ » kz, WEYER ;"
T o 3
|:k0 €p— mep ] Xy witp wmp .
TE * .[ VB, (x)VB, (x) dx
N 340
B B lu() Xy
Hy, = 2 .
14 NZ.;M l:kosB k ]xu
+2 : [V, 0V, (1) dx j I, )15, ()" dy
L kZ”zl; k X Y |

e JJ I (")IB ") deVB (y)VB ()" dy

4] B X yl
o * ]
) )
N'II;M k()gA _kxAmp j’
S 18 @I (" dxjv© VS 0 dy
D,_=% 1 k;"A wegE, M
14 *
NTE [K2e4 —-kx ],
-¥ 2 1 dev Ve )y
Tk kT
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]jVB (x)VA " (x) dxflg (y)IA ()" dy

Gmn n
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